| [1] | 
																						 
											  KLOOSTERMAN D J, AKKARI L. Macrophages at the interface of the co-evolving cancer ecosystem[J]. Cell, 2023, 186(8):1627-1651. doi:10.1016/j.cell.2023.02.020. 
											 | 
										
																													
																						| [2] | 
																						 
											  CHRISTOFIDES A, STRAUSS L, YEO A, et al. The complex role of tumor-infiltrating macrophages[J]. Nat Immunol, 2022, 23(8):1148-1156. doi:10.1038/s41590-022-01267-2. 
											 | 
										
																													
																						| [3] | 
																						 
											  CASSETTA L, POLLARD J W. A timeline of tumour-associated macrophage biology[J]. Nat Rev Cancer, 2023, 23(4):238-257. doi:10.1038/s41568-022-00547-1. 
											 | 
										
																													
																						| [4] | 
																						 
											  EVANS R, ALEXANDER P. Cooperation of immune lymphoid cells with macrophages in tumour immunity[J]. Nature, 1970, 228(5272):620-622. doi:10.1038/228620a0.
											 | 
										
																													
																						| [5] | 
																						 
											  BISWAS S K, ALLAVENA P, MANTOVANI A. Tumor-associated macrophages:functional diversity, clinical significance,and open questions[J]. Semin Immunopathol, 2013, 35(5):585-600. doi:10.1007/s00281-013-0367-7.
											 | 
										
																													
																						| [6] | 
																						 
											  MANTOVANI A, SICA A, SOZZANI S, et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol, 2004, 25(12):677-686. doi:10.1016/j.it.2004.09.015. 
											 | 
										
																													
																						| [7] | 
																						 
											  MURRAY P J, ALLEN J E, BISWAS S K, et al. Macrophage activation and polarization:nomenclature and experimental guidelines[J]. Immunity, 2014, 41(1):14-20. doi:10.1016/j.immuni.2014.06.008.
											 | 
										
																													
																						| [8] | 
																						 
											  YANG M, MCKAY D, POLLARD J W, et al. Diverse functions of macrophages in different tumor microenvironments[J]. Cancer Res, 2018, 78(19):5492-5503. doi:10.1158/0008-5472.CAN-18-1367. 
											 | 
										
																													
																						| [9] | 
																						 
											  QIAN Y, YIN Y, ZHENG X, et al. Metabolic regulation of tumor-associated macrophage heterogeneity:insights into the tumor microenvironment and immunotherapeutic opportunities[J]. Biomark Res, 2024, 12(1):1. doi:10.1186/s40364-023-00549-7.
											 | 
										
																													
																						| [10] | 
																						 
											  CHE L H, LIU J W, HUO J P, et al. A single-cell atlas of liver metastases of colorectal cancer reveals reprogramming of the tumor microenvironment in response to preoperative chemotherapy[J]. Cell Discov, 2021, 7(1):80. doi:10.1038/s41421-021-00312-y.
											 | 
										
																													
																						| [11] | 
																						 
											  CHENG S, LI Z, GAO R, et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells[J]. Cell, 2021, 184(3):792-809.e23. doi:10.1016/j.cell.2021.01.010. 
											 | 
										
																													
																						| [12] | 
																						 
											  MA R Y, BLACK A, QIAN B Z. Macrophage diversity in cancer revisited in the era of single-cell omics[J]. Trends Immunol, 2022, 43(7):546-563. doi:10.1016/j.it.2022.04.008.
											 | 
										
																													
																						| [13] | 
																						 
											  BILL R, WIRAPATI P, MESSEMAKER M, et al. CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers[J]. Science, 2023, 381(6657):515-524. doi:10.1126/science.ade2292. 
											 | 
										
																													
																						| [14] | 
																						 
											  TAURIELLO D, BATLLE E. Targeting the microenvironment in advanced colorectal cancer[J]. Trends Cancer, 2016, 2(9):495-504. doi:10.1016/j.trecan.2016.08.001. 
											 | 
										
																													
																						| [15] | 
																						 
											  MOCHIZUKI S, AO T, SUGIURA T, et al. Expression and function of a disintegrin and metalloproteinases in cancer-associated fibroblasts of colorectal cancer[J]. Digestion, 2020, 101(1):18-24. doi:10.1159/000504087. 
											 | 
										
																													
																						| [16] | 
																						 
											  KRISHNAN V, CHONG Y L, TAN T Z, et al. TGFβ promotes genomic instability after loss of RUNX3[J]. Cancer Res, 2018, 78(1):88-102. doi:10.1158/0008-5472.CAN-17-1178. 
											 | 
										
																													
																						| [17] | 
																						 
											  ZHANG R, QI F, ZHAO F, et al. Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer[J]. Cell Death Dis, 2019, 10(4):273. doi:10.1038/s41419-019-1435-2. 
											 | 
										
																													
																						| [18] | 
																						 
											  ZHOU W, GUO S, LIU M, et al. Targeting CXCL12/CXCR4 axis in tumor immunotherapy[J]. Curr Med Chem, 2019, 26(17):3026-3041. doi:10.2174/0929867324666170830111531. 
											 | 
										
																													
																						| [19] | 
																						 
											  CHO H, SEO Y, LOKE K M, et al. Cancer-stimulated CAFs enhance monocyte differentiation and protumoral TAM activation via IL6 and GM-CSF secretion[J]. Clin Cancer Res, 2018, 24(21):5407-5421. doi:10.1158/1078-0432.CCR-18-0125. 
											 | 
										
																													
																						| [20] | 
																						 
											  CASANOVA-ACEBES M, DALLA E, LEADER A M, et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells[J]. Nature, 2021, 595(7868):578-584. doi:10.1038/s41586-021-03651-8.
											 | 
										
																													
																						| [21] | 
																						 
											  ENGBLOM C, PFIRSCHKE C, PITTET M J. The role of myeloid cells in cancer therapies[J]. Nat Rev Cancer, 2016, 16(7):447-462. doi:10.1038/nrc.2016.54. 
											 | 
										
																													
																						| [22] | 
																						 
											  秦雅含, 张珂, 张梦雨, 等. MDSC靶向免疫治疗胰腺癌的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(10):1317-1323.
											 | 
										
																													
																						 | 
																						 
											  QIN Y H, ZAHGN K, ZHANG M Y, et al. Research progress of MDSCs-targeted immunotherapy for pancreatic cancer[J]. Journal of Shanghai Jiaotong University(Medical Science), 2023, 43(10):1317-1323. doi:10.3969/j.issn.1674-8115.2023.10.014.
											 | 
										
																													
																						| [23] | 
																						 
											  GERHARD G M, BILL R, MESSEMAKER M, et al. Tumor-infiltrating dendritic cell states are conserved across solid human cancers[J]. J Exp Med, 2021, 218(1):e20200264. doi:10.1084/jem.20200264.
											 | 
										
																													
																						| [24] | 
																						 
											  WU J, LU A D, ZHANG L P, et al. Study of clinical outcome and prognosis in pediatric core binding factor-acute myeloid leukemia[J]. Zhonghua Xue Ye Xue Za Zhi, 2019, 40(1):52-57. doi:10.3760/cma.j.issn.0253-2727.2019.01.010.
											 | 
										
																													
																						| [25] | 
																						 
											  SIWICKI M, PITTET M J. Versatile neutrophil functions in cancer[J]. Semin Immunol, 2021,57:101538. doi:10.1016/j.smim.2021.101538.
											 | 
										
																													
																						| [26] | 
																						 
											  MANTOVANI A, ALLAVENA P, MARCHESI F, et al. Macrophages as tools and targets in cancer therapy[J]. Nat Rev Drug Discov, 2022, 21(11):799-820. doi:10.1038/s41573-022-00520-5.
											 | 
										
																													
																						| [27] | 
																						 
											  BEJARANO L, JORDĀO M, JOYCE J A. Therapeutic targeting of the tumor microenvironment[J]. Cancer Discov, 2021, 11(4):933-959. doi:10.1158/2159-8290.CD-20-1808. 
											 | 
										
																													
																						| [28] | 
																						 
											  PITTET M J, MICHIELIN O, MIGLIORINI D. Clinical relevance of tumour-associated macrophages[J]. Nat Rev Clin Oncol, 2022, 19(6):402-421. doi:10.1038/s41571-022-00620-6.
											 | 
										
																													
																						| [29] | 
																						 
											  JING L, AN Y, CAI T, et al. A subpopulation of CD146+ macrophages enhances antitumor immunity by activating the NLRP3 inflammasome[J]. Cell Mol Immunol, 2023, 20(8):908-923. doi:10.1038/s41423-023-01047-4.
											 | 
										
																													
																						| [30] | 
																						 
											  WANG X, XU Y, SUN Q, et al. New insights from the single-cell level:tumor associated macrophages heterogeneity and personalized therapy[J]. Biomed Pharmacother, 2022,153:113343. doi:10.1016/j.biopha.2022.113343.
											 | 
										
																													
																						| [31] | 
																						 
											  XIANG X, WANG J, LU D, et al. Targeting tumor-associated macrophages to synergize tumor immunotherapy[J]. Signal Transduct Target Ther, 2021, 6(1):75. doi:10.1038/s41392-021-00484-9.
											 | 
										
																													
																						| [32] | 
																						 
											  CASSIER P A, ITALIANO A, GOMEZ-ROCA C A, et al. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue:a dose-escalation and dose-expansion phase 1 study[J]. Lancet Oncol, 2015, 16(8):949-956. doi:10.1016/S1470-2045(15)00132-1.
											 | 
										
																													
																						| [33] | 
																						 
											  NYWENING T M, WANG-GILLAM A, SANFORD D E, et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer:a single-centre, open-label,dose-finding,non-randomised,phase 1b trial[J]. Lancet Oncol, 2016, 17(5):651-662. doi:10.1016/S1470-2045(16)00078-4.
											 | 
										
																													
																						| [34] | 
																						 
											  JIAO X, VELASCO-VELÁZQUEZ M A, WANG M, et al. CCR5 governs DNA damage repair and breast cancer stem cell expansion[J]. Cancer Res, 2018, 78(7):1657-1671. doi:10.1158/0008-5472.CAN-17-0915. 
											 | 
										
																													
																						| [35] | 
																						 
											  HALAMA N, ZOERNIG I, BERTHEL A, et al. Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients[J]. Cancer Cell, 2016, 29(4):587-601. doi:10.1016/j.ccell.2016.03.005. 
											 | 
										
																													
																						| [36] | 
																						 
											  LIU J, WANG C, MA X, et al. High expression of CCR5 in melanoma enhances epithelial-mesenchymal transition and metastasis via TGFβ1[J]. J Pathol, 2019, 247(4):481-493. doi:10.1002/path.5207.
											 | 
										
																													
																						| [37] | 
																						 
											  HUGHES R, QIAN B Z, ROWAN C, et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy[J]. Cancer Res, 2015, 75(17):3479-3491. doi:10.1158/0008-5472.CAN-14-3587. 
											 | 
										
																													
																						| [38] | 
																						 
											  GUO F, WANG Y, LIU J, et al. CXCL12/CXCR4:a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks[J]. Oncogene, 2016, 35(7):816-826. doi:10.1038/onc.2015.139.
											 | 
										
																													
																						| [39] | 
																						 
											  WEISKOPF K, RING A M, HO C C, et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies[J]. Science, 2013, 341(6141):88-91. doi:10.1126/science.1238856. 
											 | 
										
																													
																						| [40] | 
																						 
											  DECZKOWSKA A, WEINER A, AMIT I. The physiology,pathology,and potential therapeutic applications of the TREM2 signaling pathway[J]. Cell, 2020, 181(6):1207-1217. doi:10.1016/j.cell.2020.05.003.
											 |