天津医药 ›› 2022, Vol. 50 ›› Issue (12): 1335-1339.doi: 10.11958/20220671
收稿日期:
2022-05-05
修回日期:
2022-06-06
出版日期:
2022-12-15
发布日期:
2022-12-30
通讯作者:
龙耀斌
E-mail:zhengjiqing@sr.gxmu.edu.cn;long232316@163.com
作者简介:
郑继青(1996),女,初级治疗师,主要从事神经系统疾病机制与康复方面研究。E-mail:基金资助:
ZHENG Jiqing1(), LONG Yaobin1,△(
), LIU Yun2
Received:
2022-05-05
Revised:
2022-06-06
Published:
2022-12-15
Online:
2022-12-30
Contact:
LONG Yaobin
E-mail:zhengjiqing@sr.gxmu.edu.cn;long232316@163.com
郑继青, 龙耀斌, 刘云. circRNA作用于急性缺血性脑卒中的研究进展[J]. 天津医药, 2022, 50(12): 1335-1339.
ZHENG Jiqing, LONG Yaobin, LIU Yun. Research advance on circRNA in acute ischemic stroke[J]. Tianjin Medical Journal, 2022, 50(12): 1335-1339.
摘要:
环状RNA(circRNA)介导内源性竞争RNA(ceRNA)调控网络已经被证实在急性缺血性脑卒中(AIS)损伤后的病理和生理过程中发挥关键作用,且分子诊断工具广泛应用后发现circRNA有望成为AIS的生物标志物,对上述研究进行归纳,可拓宽对AIS发生发展机制的研究视野,为其诊断和治疗提供新思路。
中图分类号:
[1] | ZERNA C, THOMALLA G, CAMPBELL B C V, et al. Current practice and future directions in the diagnosis and acute treatment of ischaemic stroke[J]. Lancet, 2018, 392(10154):1247-1256. doi:10.1016/S0140-6736(18)31874-9. |
[2] | HATAKEYAMA M, NINOMIYA I, OTSU Y, et al. Cell therapies under clinical trials and polarized cell therapies in pre-clinical studies to treat ischemic stroke and neurological diseases: A literature review[J]. Int J Mol Sci, 2020, 21(17):6194. doi:10.3390/ijms21176194. |
[3] | ZHANG W, CHENG J, ZHANG Y, et al. Analysis of CT and MRI combined examination for the diagnosis of acute cerebral infarction[J]. J Coll Physicians Surg Pak, 2019, 29(9):898-899. doi:10.29271/jcpsp.2019.09.898. |
[4] | JIANG Y, ZHAO J, XU J, et al. Glioblastoma-associated microglia-derived exosomal circKIF18A promotes angiogenesis by targeting FOXC2[J]. Oncogene, 2022, 41(26):3461-3473. doi:10.1038/s41388-022-02360-4. |
[5] | HUANG R, LI W, HAN D, et al. Circ_0000811 acts as a miR-15b sponge and inhibits Prkar2a-mediated JAK2/STAT1 pathway to attenuate cerebral ischemic vertigo[J]. Cell Death Discov, 2022, 8(1):247. doi:10.1038/s41420-022-01016-2. |
[6] | CEN L, LIU R, LIU W, et al. Competing endogenous RNA networks in glioma[J]. Front Genet, 2021, 12:675498. doi:10.3389/fgene.2021.675498. |
[7] | DUAN X, LI L, GAN J, et al. Identification and functional analysis of circular RNAs induced in rats by middle cerebral artery occlusion[J]. Gene, 2019, 701:139-145. doi:10.1016/j.gene.2019.03.053. |
[8] | DONG Z, DENG L, PENG Q, et al. CircRNA expression profiles and function prediction in peripheral blood mononuclear cells of patients with acute ischemic stroke[J]. J Cell Physiol, 2020, 235(3):2609-2618. doi:10.1002/jcp.29165. |
[9] | SALMENA L, POLISENO L, TAY Y, et al. A ceRNA hypothesis: The rosetta stone of a hidden RNA language?[J]. Cell, 2011, 146(3):353-358. doi:10.1016/j.cell.2011.07.014. |
[10] | ZHOU M, ZHANG T, ZHANG B, et al. A DNA nanostructure-based neuroprotectant against neuronal apoptosis via inhibiting toll-like receptor 2 signaling pathway in acute ischemic stroke[J]. ACS Nano, 2021. doi:10.1021/acsnano.1c09626. [Epub ahead of print]. |
[11] | UZDENSKY A B. Regulation of apoptosis in the ischemic penumbra in the first day post-stroke[J]. Neural Regen Res, 2020, 15(2):253-254. doi:10.4103/1673-5374.265546. |
[12] | LIU J, ZHANG H, DI K, et al. Circular noncoding RNA circ_0007865,serves as a competing endogenous RNA,targeting the miR-214-3p/FKBP5 axis to regulate oxygen-glucose deprivation-induced injury in brain microvascular endothelial cells[J]. Neuroreport, 2022, 33(4):163-172. doi:10.1097/WNR.0000000000001751. |
[13] | REN X, JING Y X, ZHOU Z W, et al. Knockdown of circRNA-Memo1 reduces hypoxia/reoxygenation injury in human brain endothelial cells through miRNA-17-5p/SOS1 axis[J]. Mol Neurobiol, 2022, 59(4):2085-2097. doi:10.10 07/s12035-022-02743-4. |
[14] | CHE F, DU H, WEI J, et al. MicroRNA-323 suppresses nerve cell toxicity in cerebral infarction via the transforming growth factor-β1/SMAD3 signaling pathway[J]. Int J Mol Med, 2019, 43(2):993-1002. doi:10.3892/ijmm.2018.4020. |
[15] | CHEN W, WANG H, FENG J, et al. Overexpression of circRNA circUCK2 attenuates cell apoptosis in cerebral ischemia-reperfusion injury via miR-125b-5p/GDF11 signaling[J]. Mol Ther Nucleic Acids, 2020, 22:673-683. doi:10.1016/j.omtn.2020.09.032. |
[16] | SUN X, DAI M, LIU X, et al. Hsa_circ_0090002 regulates miR-186-5p/HECTD1 axis to mediate brain microvascular endothelial cell dysfunction[J]. Brain Res Bull, 2022, 178:97-107. doi:10.1016/j.brainresbull.2021.11.007. |
[17] | ZHANG Z, HE J, WANG B. Circular RNA circ_HECTD1 regulates cell injury after cerebral infarction by miR-27a-3p/FSTL1 axis[J]. Cell Cycle, 2021, 20(9):914-926. doi:10.1080/15384101.2021. 1909885. |
[18] | CHEN L, LUO W, ZHANG W, et al. circDLPAG4/HECTD1 mediates ischaemia/reperfusion injury in endothelial cells via ER stress[J]. RNA Biol, 2020, 17(2):240-253. doi:10.1080/15476286.2019.1676114. |
[19] | CHEN W, WANG H, ZHU Z, et al. Exosome-shuttled circSHOC2 from IPASs regulates neuronal autophagy and ameliorates ischemic brain injury via the miR-7670-3p/SIRT1 axis[J]. Mol Ther Nucleic Acids, 2020, 22:657-672. doi:10.1016/j.omtn.2020.09.027. |
[20] | HOU W, JIANG Y, XIE G, et al. Biocompatible BSA-MnO2 nanoparticles for in vivo timely permeability imaging of blood-brain barrier and prediction of hemorrhage transformation in acute ischemic stroke[J]. Nanoscale, 2021, 13(18):8531-8542. doi:10.1039/d1nr02015c. |
[21] | 程骁, 曹玉成, 黄燕, 等. 星形胶质细胞源性因子对缺血性脑卒中后血-脑屏障的调节机制[J]. 中国微侵袭神经外科杂志, 2020, 25(12):565-568. |
CHENG X, CAO Y C, HUANG Y, et al. The regulatory mechanism of astrocyte-derived factor on the blood-brain barrier after ischemic stroke[J]. Chinese Journal of Minimally Invasive Neurosurgery, 2020, 25(12):565-568. doi:10.11850/j.issn.1009-122X.2020.12.013. | |
[22] | NIAN K, HARDING I C, HERMAN I M, et al. Blood-brain barrier damage in ischemic stroke and its regulation by endothelial mechanotransduction[J]. Front Physiol, 2020, 11:605398. doi:10.3389/fphys.2020.605398. |
[23] | LU D, HO E S, MAI H, et al. Identification of blood circular RNAs as potential biomarkers for acute ischemic stroke[J]. Front Neurosci, 2020, 14:81. doi:10.3389/fnins.2020.00081. |
[24] | NGUYEN Q L, OKUNO N, HAMASHIMA T, et al. Vascular PDGFR-alpha protects against BBB dysfunction after stroke in mice[J]. Angiogenesis, 2021, 24(1):35-46. doi:10.1007/s10456-020-09742-w. |
[25] | SU E J, CAO C, FREDRIKSSON L, et al. Microglial-mediated PDGF-CC activation increases cerebrovascular permeability during ischemic stroke[J]. Acta Neuropathol, 2017, 134(4):585-604. doi:10.1007/s00401-017-1749-z. |
[26] | BAI Y, ZHANG Y, HUA J, et al. Silencing microRNA-143 protects the integrity of the blood-brain barrier:Implications for methamphetamine abuse[J]. Sci Rep, 2016, 6:35642. doi:10.1038/srep35642. |
[27] | BAI Y, ZHANG Y, HAN B, et al. Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity[J]. J Neurosci, 2018, 38(1):32-50. doi:10.1523/JNEUROSCI.1348-17.2017. |
[28] | GUDBERGSSON J M, JOHNSEN K B. Exosomes and autophagy:Rekindling the vesicular waste hypothesis[J]. J Cell Commun Signal, 2019, 13(4):443-450. doi:10.1007/s12079-019-00524-8. |
[29] | ZHOU D, HUANG Z, ZHU X, et al. Circular RNA 0025984 ameliorates ischemic stroke injury and protects astrocytes through miR-143-3p/TET1/ORP150 pathway[J]. Mol Neurobiol, 2021, 58(11):5937-5953. doi:10.1007/s12035-021-02486-8. |
[30] | ESTEVES A R, PALMA A M, GOMES R, et al. Acetylation as a major determinant to microtubule-dependent autophagy:Relevance to Alzheimer's and Parkinson disease pathology[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(8):2008-2023. doi:10.1016/j.bbadis.2018.11.014. |
[31] | TANG C, OU J, KOU L, et al. Circ_016719 plays a critical role in neuron cell apoptosis induced by I/R via targeting miR-29c/Map2k6[J]. Mol Cell Probes, 2020, 49:101478. doi:10.1016/j.mcp.2019.101478. |
[32] | MIYAZAKI I, ASNUMA M. Neuron-astrocyte interactions in Parkinson's disease[J]. Cells, 2020, 9(12):2623. doi:10.3390/cells9122623. |
[33] | ZHA H, FAN Y, YANG L, et al. Autophagy protects against cerebral ischemic reperfusion injury by inhibiting neuroinflammation[J]. Am J Transl Res, 2021, 13(5):4726-4737. |
[34] | HAN B, ZHANG Y, ZHANG Y, et al. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP:Implications for cerebral ischemic stroke[J]. Autophagy, 2018, 14(7):1164-1184. doi:10.1080/15548627.2018.1458173. |
[35] | 胡彦, 王锁刚, 翟琼瑶, 等. 积雪草苷调控SIRT1-FOXO3-PINK1-Parkin通路介导的线粒体自噬保护肾缺血再灌注损伤的机制研究[J]. 天津医药, 2021, 49(11):1148-1153. |
HU Y, WANG S G, ZHAI Q Y, et al. The study of asiaticoside regulating SIRT1-FOXO3-PINK1-Parkin pathway-mediated protective mechanism of mitochondrial autophagy on renal ischemia-reperfusion injury[J]. Tianjin Med J, 2021, 49(11):1148-1153. doi:10.11958/20210354. | |
[36] | FOROUZANFAR F, EBRAHIMI P R, SADEGHNIA H R. Neuroprotection of everolimus against focal cerebral ischemia-reperfusion injury in rats[J]. J Stroke Cerebrovasc Dis, 2022, 31(8):106576. doi:10.1016/j.jstrokecerebrovasdis.2022.106576. |
[37] | FENG Z, ZHANG L, WANG S, et al. Circular RNA circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway in Parkinson's disease[J]. Biochem Biophys Res Commun, 2020, 522(2):388-394. doi:10.1016/j.bbrc.2019.11.102. |
[38] | GONG J, LI Z Z, GUO S, et al. Neuron-specific tumor necrosis factor receptor-associated factor 3 is a central regulator of neuronal death in acute ischemic stroke[J]. Hypertension, 2015, 66(3):604-616. doi:10.1161/HYPERTENSIONAHA.115.05430. |
[39] | XIN H, WANG F, LI Y, et al. Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells[J]. Cell Transplant, 2017, 26(2):243-257. doi:10.3727/096368916X693031. |
[40] | DAI Q, MA Y, XU Z, et al. Downregulation of circular RNA HECTD1 induces neuroprotection against ischemic stroke through the microRNA-133b/TRAF3 pathway[J]. Life Sci, 2021, 264:118626. doi:10.1016/j.lfs.2020.118626. |
[41] | WU F, HAN B, WU S, et al. Circular RNA TLK1 aggravates neuronal injury and neurological deficits after ischemic stroke via miR-335-3p/TIPARP[J]. J Neurosci, 2019, 39(37):7369-7393. doi:10.1523/JNEUROSCI.0299-19.2019. |
[42] | QIU L, HE J, CHEN H, et al. CircDLGAP4 overexpression relieves oxygen-glucose deprivation-induced neuronal injury by elevating NEGR1 through sponging miR-503-3p[J]. J Mol Histol, 2022, 53(2):321-332. doi:10.1007/s10735-021-10036-8. |
[43] | HOLDT L M, KOHLMAIER A, TEUPSER D. Molecular roles and function of circular RNAs in eukaryotic cells[J]. Cell Mol Life Sci, 2018, 75(6):1071-1098. doi:10.1007/s00018-017-2688-5. |
[44] | OKHOLM T L H, SATHE S, PARK S S, et al. Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression[J]. Genome Med, 2020, 12(1):112. doi:10.1186/s13073-020-00812-8. |
[45] | PENG X, JING P, CHEN J, et al. The role of circular RNA HECTD1 expression in di sease risk,disease severity,inflammation,and recurrence of acute ischemic stroke[J]. J Clin Lab Anal, 2019, 33(7):e22954. doi:10.1002/jcla.22954. |
[46] | ZHU X, DING J, WANG B, et al. Circular RNA DLGAP4 is down-regulated and negatively correlates with severity,inflammatory cytokine expression and pro-inflammatory gene miR-143 expression in acute ischemic stroke patients[J]. Int J Clin Exp Pathol, 2019, 12(3):941-948. |
[47] | ZUO L, ZHANG L, ZU J, et al. Circulating circular RNAs as biomarkers for the diagnosis and prediction of outcomes in acute ischemic stroke[J]. Stroke, 2020, 51(1):319-323. doi:10.1161/STROKEAHA.119.027348. |
[1] | 郑继青, 龙耀斌, 徐金. 辣椒素联合重复经颅磁刺激用于脑卒中后吞咽障碍患者的疗效观察[J]. 天津医药, 2024, 52(9): 950-953. |
[2] | 焦爱菊, 任宝龙, 张春花, 李文瑞, 赵玮婧. NIHSS评分联合血清BDNF、IL-6对脑卒中后抑郁的预测价值[J]. 天津医药, 2024, 52(9): 963-966. |
[3] | 王俊懿, 李宸, 吴昕岳, 丁心语, 万春晓. 早期运动干预对脑缺血大鼠脑神经髓鞘的影响及机制研究[J]. 天津医药, 2024, 52(6): 589-594. |
[4] | 薛晶, 元小冬, 邢爱君, 王连辉, 马倩, 符永山, 张萍淑. 急性缺血性脑卒中患者睡眠-觉醒生物节律变化与预后的关系研究[J]. 天津医药, 2024, 52(6): 614-619. |
[5] | 钱洪春, 张萍淑, 元小冬, 袁建新, 曹凌云, 段丽琴. 卒中伴阻塞性睡眠呼吸暂停患者认知功能损害与睡眠参数的关系[J]. 天津医药, 2024, 52(6): 619-624. |
[6] | 韩琴, 韩秀丽, 陈伟然. 老年脑卒中患者康复治疗后抑郁障碍的影响因素分析[J]. 天津医药, 2024, 52(6): 639-642. |
[7] | 张丽红, 李瑞青, 王艺莹, 梅紧紧, 苏凯奇, 顾昌宇, 黄梦玲. 督脉电针调控胱氨酸/谷氨酸反向转运体改善脑卒中后肢体痉挛的作用机制[J]. 天津医药, 2024, 52(5): 463-468. |
[8] | 王月, 权兴苗, 王玉, 宋春侠, 邵月, 徐立伟. 益气升清方调节HIF-1α/NLRP3信号通路对缺血性脑卒中大鼠神经元焦亡的影响[J]. 天津医药, 2024, 52(4): 350-355. |
[9] | 肖雨倩, 孙可心, 万俊, 陈淑颖, 陈丽敏, 王岩, 白艳杰. RNA m6A甲基化在卒中后认知障碍中的研究进展[J]. 天津医药, 2024, 52(3): 331-336. |
[10] | 丁波, 龚洁芹, 沈李奎. 急性缺血性脑卒中患者血清指标与病情和预后的关系[J]. 天津医药, 2024, 52(2): 172-176. |
[11] | 周秀芬, 刘晖, 陈虹, 赵宗波. SAP患者GLI与外周血各指标变化的临床意义[J]. 天津医药, 2024, 52(12): 1286-1291. |
[12] | 张晶晶, 赵文栋, 赵远, 张清峡, 杜佳, 刘艳霞. CALLY指数对缺血性脑卒中后抑郁的预测价值[J]. 天津医药, 2024, 52(12): 1300-1304. |
[13] | 姚和, 林艳丽, 崔雨萌, 阎新龙. 外泌体环状RNA在胃癌中作用机制的研究进展[J]. 天津医药, 2024, 52(10): 1110-1115. |
[14] | 孙可心, 肖雨倩, 万俊, 陈淑颖, 陈丽敏, 王岩, 白艳杰. 脑类器官技术及在脑卒中治疗中的应用进展[J]. 天津医药, 2024, 52(1): 38-43. |
[15] | 张金武, 谢丁玲, 陈莉. 一叶萩碱对大鼠脑缺血再灌注损伤后神经功能的影响[J]. 天津医药, 2023, 51(9): 977-982. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||