[1] |
ONTKO C D, CAPOZZI M E, KIM M J, et al. Cytochrome P450-epoxygenated fatty acids inhibit Müller glial inflammation[J]. Sci Rep, 2021, 11(1):9677. doi:10.1038/s41598-021-98425-7.
|
[2] |
张悦, 刘含若. Müller细胞在视网膜疾病发病机制中的作用[J]. 国际眼科纵览, 2022, 46(2):179-184.
|
|
ZHANG Y, LIU H R. Role of Müller cells in pathogenesis of retinal diseases[J]. Int Rev Ophthal, 2022, 46(2):179-184. doi:10.3760/cma.j.issn.1673-5803.2022.02.015.
|
[3] |
COUGHLIN B A, FEENSTRA D J, MOHR S. Müller cells and diabetic retinopathy[J]. Vision Res, 2017, 139(10):93-100. doi:10.1016/j.visres.2017.03.013.
|
[4] |
FAN J, FONG T, CHEN X, et al. Glia maturation factor-β:A potential therapeutic target in neurodegeneration and neuroinflammation[J]. Neuropsychiatr Dis Treat, 2018, 14(2):495-504. doi:10.2147/NDT.S157099.
|
[5] |
LIU C, SUN W, ZHU T, et al. Glia maturation factor-β induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy[J]. Redox Biol, 2022, 52(6):102292. doi:10.1016/j.redox.2022.102292.
|
[6] |
AFARID M, NAMVAR E, SANIE-JAHROMI F. Diabetic retinopathy and BDNF:a review on its molecular basis and clinical applications[J]. J Ophthalmol, 2020, 18(5):1602739. doi:10.1155/2020/1602739.
|
[7] |
ZHU M, LI N, WANG Y, et al. Regulation of inflammation by VEGF/BDNF signaling in mouse retinal Müller glial cells exposed to high glucose[J]. Cell Tissue Res, 2022, 388(3):521-533. doi:10.1007/s00441-022-03622-z.
|
[8] |
JIANG N, WANG H, LI C, et al. The antidepressant-like effects of the water extract of Panax ginseng and Polygala tenuifolia are mediated via the BDNF-TrkB signaling pathway and neurogenesis in the hippocampus[J]. J Ethnopharmacol, 2021, 267(3):113625. doi:10.1016/j.jep.2020.113625.
|
[9] |
NISHIWAKI A, ASAI K, TADA T, et al. Expression of glia maturation factor during retinal development in the rat[J]. Brain Res Mol Brain Res, 2001, 95(1/2):103-109. doi:10.1016/s0169-328x(01)00252-2.
|
[10] |
GU L, XU H, ZHANG C, et al. Time-dependent changes in hypoxia- and gliosis-related factors in experimental diabetic retinopathy[J]. Eye (Lond), 2019, 33(4):600-609. doi:10.1038/s41433-018-0268-z.
|
[11] |
张俏, 罗影, 刘学政. 番石榴叶总三萜改善糖尿病大鼠视网膜损伤的作用机制研究[J]. 天津医药, 2020, 48(12):1165-1168.
|
|
ZHANG Q, LUO Y, LIU X Z. The effect of total triterpenoids in guava leaves on retinal injury in diabetic rats[J]. Tianjin Med J, 2020, 48(12):1165-1168. doi:10.11958/20201920.
|
[12] |
GIBLIN M J, SMITH T E, WINKLER G, et al. Nuclear factor of activated T-cells (NFAT) regulation of IL-1β-induced retinal vascular inflammation[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(12): 166238. doi:10.1016/j.bbadis.2021.166238.
|
[13] |
ROBINSON R, YOUNGBLOOD H, IYER H, et al. Diabetes induced alterations in murine vitreous proteome are mitigated by IL-6 trans-signaling inhibition[J]. Invest Ophthalmol Vis Sci, 2020, 61(11):2. doi:10.1167/iovs.61.11.2.
|
[14] |
WANG C S, KAVALALI E T, MONTEGGIA L M. BDNF signaling in context: From synaptic regulation to psychiatric disorders[J]. Cell, 2022, 185(1):62-76. doi:10.1016/j.cell.2021.12.003.
|
[15] |
SUZUMURA A, KANEKO H, FUNAHASHI Y, et al. N-3 fatty acid and its metabolite 18-HEPE ameliorate retinal neuronal cell dysfunction by enhancing Müller BDNF in diabetic retinopathy[J]. Diabetes, 2020, 69(4):724-735. doi:10.2337/db19-0550.
|