[1] |
LEE K P, CHANG A Y W, SUNG P S. Association between blood pressure,blood pressure variability,and post-stroke cognitive impairment[J]. Biomedicines, 2021, 9(7):773. doi:10.3390/biomedicines9070773.
|
[2] |
RAN Y, SU W, GAO F, et al. Curcumin ameliorates white matter injury after ischemic stroke by inhibiting microglia/macrophage pyroptosis through NF-κB suppression and NLRP3 inflammasome inhibition[J]. Oxid Med Cell Longev, 2021, 2021:1552127. doi:10.1155/2021/1552127.
|
[3] |
LI Q, WEN S, YE W, et al. The potential roles of m6A modification in regulating the inflammatory response in microglia[J]. J Neuroinflammation, 2021, 18(1):149. doi:10.1186/s12974-021-02205-z.
|
[4] |
ZACCARA S, RIES R J, JAFFREY S R. Reading,writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019, 20(10):608-624. doi:10.1038/s41580-019-0168-5.
|
[5] |
YU Z, ZHENG L, GENG Y, et al. FTO alleviates cerebral ischemia/reperfusion-induced neuroinflammation by decreasing cGAS mRNA stability in an m6A-dependent manner[J]. Cell Signal, 2023, 109:110751. doi:10.1016/j.cellsig.2023.110751.
|
[6] |
SCHÖLLER E, WEICHMANN F, TREIBER T, et al. Interactions,localization,and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex[J]. RNA, 2018, 24(4):499-512. doi:10.1261/rna.064063.117.
|
[7] |
AOYAMA T, YAMASHITA S, TOMITA K. Mechanistic insights into m6A modification of U6 snRNA by human METTL16[J]. Nucleic Acids Res, 2020, 48(9):5157-5168. doi:10.1093/nar/gkaa227.
|
[8] |
ZOU J, LIU H, TAN W, et al. Dynamic regulation and key roles of ribonucleic acid methylation[J]. Front Cell Neurosci, 2022, 16:1058083. doi:10.3389/fncel.2022.1058083.
|
[9] |
SPYCHALA A, RÜTHER U. FTO affects hippocampal function by regulation of BDNF processing[J]. PloS One, 2019, 14(2):e0211937. doi:10.1371/journal.pone.0211937.
|
[10] |
DU T, LI G, YANG J, et al. RNA demethylase Alkbh5 is widely expressed in neurons and decreased during brain development[J]. Brain Res Bull, 2020, 163:150-159. doi:10.1016/j.brainresbull.2020.07.018.
|
[11] |
SHI R, YING S, LI Y, et al. Linking the YTH domain to cancer:the importance of YTH family proteins in epigenetics[J]. Cell Death Dis, 2021, 12(4):346. doi:10.1038/s41419-021-03625-8.
|
[12] |
SUN C Y, CAO D, DU B B, et al. The role of insulin-like growth factor 2 mRNA-binding proteins(IGF2BPs)as m(6)A readers in cancer[J]. Int J Biol Sci, 2022, 18(7):2744-2758. doi:10.7150/ijbs.70458.
|
[13] |
CHOE J, LIN S, ZHANG W, et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis[J]. Nature, 2018, 561(7724):556-560. doi:10.1038/s41586-018-0538-8.
|
[14] |
LI X, AN P, HAN F, et al. Silencing of YTHDF1 attenuates cerebral stroke by inducing PTEN degradation and activating the PTEN/AKT/mTOR pathway[J]. Mol Biotechnol, 2022, 65(5):822-832. doi:10.1007/s12033-022-00575-0.
|
[15] |
SI W, LI Y, YE S, et al. Methyltransferase 3 mediated miRNA m6A methylation promotes stress granule formation in the early stage of acute ischemic stroke[J]. Front Mol Neurosci, 2020, 13:103. doi:10.3389/fnmol.2020.00103.
|
[16] |
LIU Y, YAN Z, REN Y, et al. Electroacupuncture inhibits hippocampal neuronal apoptosis and improves cognitive dysfunction in mice with vascular dementia via the JNK signaling pathway[J]. Acupunct Med, 2022:9645284221136878. doi:10.1177/09645284221136878.
|
[17] |
XU K, MO Y, LI D, et al. N(6)-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia-reperfusion injury[J]. Ther Adv Chronic Dis, 2020, 11:2040622320916024. doi:10.1177/2040622320916024.
|
[18] |
HOU L, LI S, LI S, et al. FTO inhibits oxidative stress by mediating m6A demethylation of Nrf2 to alleviate cerebral ischemia/reperfusion injury[J]. J Physiol Biochem, 2023, 79(1):133-146. doi:10.1007/s13105-022-00929-x.
|
[19] |
WANG Q S, XIAO R J, PENG J, et al. Bone marrow mesenchymal stem cell-derived exosomal KLF4 alleviated ischemic stroke through inhibiting N6-Methyladenosine modification level of Drp1 by targeting lncRNA-ZFAS1[J]. Mol Neurobiol, 2023, 60(7):3945-3962. doi:10.1007/s12035-023-03301-2.
|
[20] |
LI L, ZANG L, ZHANG F, et al. Fat mass and obesity-associated(FTO)protein regulates adult neurogenesis[J]. Hum Mol Genet, 2017, 26(13):2398-2411. doi:10.1093/hmg/ddx128.
|
[21] |
ZHUANG M, LI X, ZHU J, et al. The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression[J]. Nucleic Acids Res, 2019, 47(9):4765-4777. doi:10.1093/nar/gkz157.
|
[22] |
SHI H, ZHANG X, WENG Y L, et al. m(6)A facilitates hippocampus-dependent learning and memory through YTHDF1[J]. Nature, 2018, 563(7730):249-253. doi:10.1038/s41586-018-0666-1.
|
[23] |
CHEN J, ZHANG Y C, HUANG C, et al.m(6)A regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2[J]. Genomics Proteomics Bioinformatics, 2019, 17(2):154-168. doi:10.1016/j.gpb.2018.12.007.
|
[24] |
XU S, LI Y, CHEN J P, et al. Oxygen glucose deprivation/re-oxygenation-induced neuronal cell death is associated with Lnc-D63785 m6A methylation and miR-422a accumulation[J]. Cell Death Dis, 2020, 11(9):816. doi:10.1038/s41419-020-03021-8.
|
[25] |
SUN P, MA F, XU Y, et al. Genetic deletion of endothelial microRNA-15a/16-1 promotes cerebral angiogenesis and neurological recovery in ischemic stroke through Src signaling pathway[J]. J Cereb Blood Flow Metab, 2021, 41(10):2725-2742. doi:10.1177/0271678x211010351.
|
[26] |
MATHIYALAGAN P, ADAMIAK M, MAYOURIAN J, et al.FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair[J]. Circulation, 2019, 139(4):518-532. doi:10.1161/circulationaha.118.033794.
|
[27] |
YAO M D, JIANG Q, MA Y, et al. Role of METTL3-dependent N(6)-methyladenosine mRNA modification in the promotion of angiogenesis[J]. Mol Ther, 2020, 28(10):2191-2202. doi:10.1016/j.ymthe.2020.07.022.
|
[28] |
LI B, XI W, BAI Y, et al.FTO-dependent m(6)A modification of Plpp3 in circSCMH1-regulated vascular repair and functional recovery following stroke[J]. Nat Commun, 2023, 14(1):489. doi:10.1038/s41467-023-36008-y.
|
[29] |
LIANG E, XIAO S, ZHAO C, et al. M6A modification promotes blood-brain barrier breakdown during cerebral ischemia/reperfusion injury through increasing matrix metalloproteinase 3 expression[J]. Heliyon, 2023, 9(6):e16905. doi:10.1016/j.heliyon.2023.e16905.
|
[30] |
LI S, HU W, GONG S, et al. The role of PRRC2B in cerebral vascular remodeling under acute hypoxia in mice[J]. Adv Sci(Weinh), 2023:e2300892. doi:10.1002/advs.202300892.
|
[31] |
ZHANG X, YUAN M, YANG S, et al. Enriched environment improves post-stroke cognitive impairment and inhibits neuroinflammation and oxidative stress by activating Nrf2-ARE pathway[J]. Int J Neurosci, 2021, 131(7):641-649. doi:10.1080/00207454.2020.1797722.
|
[32] |
ZHU L, LIU S, LIAO F, et al. Comprehensive analysis of blood-based m6A methylation in human ischemic stroke[J]. Mol Neurobiol, 2023, 60(2):431-446. doi:10.1007/s12035-022-03064-2.
|
[33] |
CHOKKALLA A K, MEHTA S L, KIM T, et al. Transient focal ischemia significantly alters the m(6)A epitranscriptomic tagging of RNAs in the brain[J]. Stroke, 2019, 50(10):2912-2921. doi:10.1161/strokeaha.119.026433.
|
[34] |
HOSHINO K, HASEGAWA K, KAMIYA H, et al. Synapse-specific effects of IL-1β on long-term potentiation in the mouse hippocampus[J]. Biomed Res, 2017, 38(3):183-188. doi:10.2220/biomedres.38.183.
|
[35] |
AL MAMUN A, CHAUHAN A, QI S, et al. Microglial IRF5-IRF4 regulatory axis regulates neuroinflammation after cerebral ischemia and impacts stroke outcomes[J]. Proc Natl Acad Sci U S A, 2020, 117(3):1742-1752. doi:10.1073/pnas.1914742117.
|
[36] |
WEN L, SUN W, XIA D, et al. The m6A methyltransferase METTL3 promotes LPS-induced microglia inflammation through TRAF6/NF-κB pathway[J]. Neuroreport, 2022, 33(6):243-251. doi:10.1097/wnr.0000000000001550.
|
[37] |
DING L, WU H, WANG Y, et al. m6A reader Igf2bp1 regulates the inflammatory responses of microglia by stabilizing Gbp11 and Cp mRNAs[J]. Front Immunol, 2022, 13:872252. doi:10.3389/fimmu.2022.872252.
|
[38] |
ZHOU H, XU Z, LIAO X, et al. Low expression of YTH domain-containing 1 promotes microglial M1 polarization by reducing the stability of sirtuin 1 mRNA[J]. Front Cell Neurosci, 2021, 15:774305. doi:10.3389/fncel.2021.774305.
|
[39] |
ZHENG L, TANG X, LU M, et al. microRNA-421-3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting m6A reader YTHDF1 to inhibit p65 mRNA translation[J]. Int Immunopharmacol, 2020, 88:106937. doi:10.1016/j.intimp.2020.106937.
|
[40] |
TAN C, WU Q, WANG H, et al. Dysbiosis of gut microbiota and short-chain fatty acids in acute ischemic stroke and the subsequent risk for poor functional outcomes[J]. JPEN J Parenter Enteral Nutr, 2021, 45(3):518-529. doi:10.1002/jpen.1861.
|
[41] |
LIAO S, WU J, LIU R, et al. A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: role of Akt(Ser473)/GSK3β(Ser9)-mediated Nrf2 activation[J]. Redox Biol, 2020, 36:101644. doi:10.1016/j.redox.2020.101644.
|
[42] |
QI L, HU H, WANG Y, et al. New insights into the central sympathetic hyperactivity post-myocardial infarction: roles of METTL3-mediated m(6)A methylation[J]. J Cell Mol Med, 2022, 26(4):1264-1280. doi:10.1111/jcmm.17183.
|
[43] |
HU W, XIE H, ZENG Y, et al. N6-methyladenosine participates in mouse hippocampus neurodegeneration via PD-1/PD-L1 pathway[J]. Front Neurosci, 2023, 17:1145092. doi:10.3389/fnins.2023.1145092.
|
[44] |
JIANG Z, SHI L, HUANG H, et al. Downregulated FTO promotes microRNA-155-mediated inflammatory response in cerebral ischemia/reperfusion injury[J]. Neuroscience, 2023: 526:305-313. doi:10.1016/j.neuroscience.2023.07.012.
|
[45] |
LIU Q, BHUIYAN M I H, LIU R, et al. Attenuating vascular stenosis-induced astrogliosis preserves white matter integrity and cognitive function[J]. J Neuroinflammation, 2021, 18(1):187. doi:10.1186/s12974-021-02234-8.
|
[46] |
COCKOVA Z, HONC O, TELENSKY P, et al. Streptozotocin-induced astrocyte mitochondrial dysfunction is ameliorated by FTO inhibitor MO-I-500[J]. ACS Chem Neurosci, 2021, 12(20):3818-3828. doi:10.1021/acschemneuro.1c00063.
|
[47] |
HUANG R, ZHANG Y, BAI Y, et al. N(6)-methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors[J]. Biol Psychiatry, 2020, 88(5):392-404. doi:10.1016/j.biopsych.2020.02.018.
|
[48] |
LI Z, MONIRUZZAMAN M, DASTGHEYB R M, et al. Astrocytes deliver CK1 to neurons via extracellular vesicles in response to inflammation promoting the translation and amyloidogenic processing of APP[J]. J Extracell Vesicles, 2020, 10(2):e12035. doi:10.1002/jev2.12035.
|
[49] |
OUYANG F, JIANG Z, CHEN X, et al. Is cerebral amyloid-β deposition related to post-stroke cognitive impairment?[J]. Transl Stroke Res, 2021, 12(6):946-957. doi:10.1007/s12975-021-00921-5.
|