[1] |
OPITZ C A, HOLFELDER P, PRENTZELL M T, et al. The complex biology of aryl hydrocarbon receptor activation in cancer and beyond[J]. Biochem Pharmacol, 2023,216:115798. doi:10.1016/j.bcp.2023.115798.
|
[2] |
GUILLON C, MEZIANI M, ABDELLI S, et al. The aryl hydrocarbon receptor pathway plays a central role in the cutaneous response to pollutants[J]. Eur J Dermatol, 2022, 32(3):305-311. doi:10.1684/ejd.2022.4262.
|
[3] |
ACCIOLI C, DA S M, SANTOS B, et al. Aryl hydrocarbon receptor as a therapeutical target of environmentally induced skin conditions[J]. Mol Pharmacol, 2023, 103(5):255-265. doi:10.1124/molpharm.122.000627.
|
[4] |
BUNGSU I, KIFLI N, AHMAD S R, et al. Herbal plants:the role of AhR in mediating immunomodulation[J]. Front Immunol, 2021,12:697663. doi:10.3389/fimmu.2021.697663.
|
[5] |
KEAM S J. Tapinarof cream 1%:first approval[J] Drugs, 2022, 82(11):1221-1228. doi:10.1007/s40265-022-01748-6.
|
[6] |
KIM H B, UM J Y, CHUNG B Y, et al. Aryl hydrocarbon receptors:evidence of therapeutic targets in chronic inflammatory skin diseases[J]. Biomedicines, 2022, 10(5):1087. doi:10.3390/biomedicines10051087.
|
[7] |
KOU Z, TRAN F, DAI W. Heavy metals,oxidative stress,and the role of AhR signaling[J]. Toxicol Appl Pharmacol, 2024,482:116769. doi:10.1016/j.taap.2023.116769.
|
[8] |
SAFE S, JIN U H, PARK H, et al. Aryl hydrocarbon receptor (AHR) ligands as selective AHR modulators (SAhRMs)[J]. Int J Mol Sci, 2020, 21(18):6654. doi:10.3390/ijms21186654.
|
[9] |
GRANADOS J C, FALAH K, KOO I, et al. AHR is a master regulator of diverse pathways in endogenous metabolism[J]. Sci Rep, 2022, 12(1):16625. doi:10.1038/s41598-022-20572-2.
|
[10] |
REJANO-GORDILLO C M, MARIN-DIAZ B, ORDIALES-TALAVERO A, et al. From nucleus to organs:insights of aryl hydrocarbon receptor molecular mechanisms[J]. Int J Mol Sci, 2022, 23(23):14919. doi:10.3390/ijms232314919.
|
[11] |
NAPOLITANO M, FABBROCINI G, MARTORA F, et al. Role of aryl hydrocarbon receptor activation in inflammatory chronic skin diseases[J]. Cells, 2021, 10(12):3559. doi:10.3390/cells10123559.
|
[12] |
LIU H M, CHENG M Y, XUN M H, et al. Possible mechanisms of oxidative stress-induced skin cellular senescence,inflammation,and cancer and the therapeutic potential of plant polyphenols[J]. Int J Mol Sci, 2023, 24(4):3755. doi:10.3390/ijms24043755.
|
[13] |
SANTIBANEZ-ANDRADE M, QUEZADA-MALDONADO E M, RIVERA-PINEDA A, et al. The road to malignant cell transformation after particulate matter exposure:from oxidative stress to genotoxicity[J]. Int J Mol Sci, 2023, 24(2):1782. doi:10.3390/ijms24021782.
|
[14] |
VOGELEY C, ROLFES K M, KRUTMANN J, et al. The aryl hydrocarbon receptor in the pathogenesis of environmentally-induced squamous cell carcinomas of the skin[J]. Front Oncol, 2022,12:841721. doi:10.3389/fonc.2022.841721.
|
[15] |
MOKRZYNSKI K, KRZYSZTYNSKA-KULETA O, ZAWROTNIAK M, et al. Fine particulate matter-induced oxidative stress mediated by UVA-visible light leads to keratinocyte damage[J]. Int J Mol Sci, 2021, 22(19):10645. doi:10.3390/ijms221910645.
|
[16] |
CASTANEDA A R, PINKERTON K E, BEIN K J, et al. Ambient particulate matter activates the aryl hydrocarbon receptor in dendritic cells and enhances Th17 polarization[J]. Toxicol Lett, 2018, 292:85-96. doi:10.1016/j.toxlet.2018.04.020.
|
[17] |
PRASAD S N, NAGARKATTI M, NAGARKATTI P. From suppressor T cells to regulatory T cells:how the journey that began with the discovery of the toxic effects of TCDD led to better understanding of the role of AhR in immunoregulation[J]. Int J Mol Sci, 2020, 21(21):7849. doi:10.3390/ijms21217849.
|
[18] |
KIM J, LEE J, LI X, et al. Single-cell transcriptomics suggest distinct upstream drivers of IL-17A/F in hidradenitis versus psoriasis[J]. J Allergy Clin Immunol, 2023, 152(3):656-666. doi:10.1016/j.jaci.2023.05.012.
|
[19] |
DAVID E, CZARNOWICKI T. The pathogenetic role of Th17 immune response in atopic dermatitis[J]. Curr Opin Allergy Clin Immunol, 2023, 23(5):446-453. doi:10.1097/ACI.0000000000000926.
|
[20] |
UBEROI A, BARTOW-MCKENNEY C, ZHENG Q, et al. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor[J]. Cell Host Microbe, 2021, 29(8):1235-1248. doi:10.1016/j.chom.2021.05.011.
|
[21] |
TSUJI G, YAMAMURA K, KAWAMURA K, et al. Novel therapeutic targets for the treatment of atopic dermatitis[J]. Biomedicines, 2023, 11(5):1303. doi:10.3390/biomedicines11051303.
|
[22] |
黎敏, 龚坚, 吴伟伟, 等. Nrf2/HO-1通路在银屑病中作用的研究进展[J]. 天津医药, 2024, 52(5):552-556.
|
|
LI M, GONG J, WU W W, et al. Research progress on the role of Nrf2/HO-1 pathway in psoriasis[J]. Tianjin Med J, 2024, 52(5):552-556. doi:10.11958/20231583.
|
[23] |
JANG Y S, JEONG S, KIM A R, et al. Cannabidiol mediates epidermal terminal differentiation and redox homeostasis through aryl hydrocarbon receptor(AhR)-dependent signaling[J]. J Dermatol Sci, 2023, 109(2):61-70. doi:10.1016/j.jdermsci.2023.01.008.
|
[24] |
UCHI H, YASUMATSU M, MORINO-KOGA S, et al. Inhibition of aryl hydrocarbon receptor signaling and induction of NRF2-mediated antioxidant activity by cinnamaldehyde in human keratinocytes[J]. J Dermatol Sci, 2017, 85(1):36-43. doi:10.1016/j.jdermsci.2016.10.003.
|
[25] |
CHESSA M A, LA PLACA M, PATRIZI A, et al. Chloracne:a case series on cutaneous expression of CYP1A1 as diagnostic biomarker[J]. Clin Exp Dermatol, 2021, 46(5):896-900. doi:10.1111/ced.14617.
|
[26] |
FURUE M, FUYUNO Y, MITOMA C, et al. Therapeutic agents with AHR inhibiting and NRF2 activating activity for managing chloracne[J]. Antioxidants (Basel), 2018, 7(7):90. doi:10.3390/antiox7070090.
|
[27] |
PETIT R G, CANO A, ORTIZ A, et al. Psoriasis:from pathogenesis to pharmacological and nano-technological-basedtherapeutics[J]. Int J Mol Sci, 2021, 22(9):4983. doi:10.3390/ijms22094983.
|
[28] |
MAN A M, ORASAN M S, HOTEIUC O A, et al. Inflammation and psoriasis:A comprehensive review[J]. Int J Mol Sci, 2023, 24(22):16095. doi:10.3390/ijms242216095.
|
[29] |
DI MEGLIO P, DUARTE J H, AHLFORS H, et al. Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions[J]. Immunity, 2014, 40(6):989-1001. doi:10.1016/j.immuni.2014.04.019.
|
[30] |
BISSONNETTE R, STEIN G L, RUBENSTEIN D S, et al. Tapinarof in the treatment of psoriasis:A review of the unique mechanism of action of a novel therapeutic aryl hydrocarbon receptor-modulating agent[J]. J Am Acad Dermatol, 2021, 84(4):1059-1067. doi:10.1177/12034754241239050.
|
[31] |
LIN X, MENG X, LIN J. The role of aryl hydrocarbon receptor in the pathogenesis and treatment of psoriasis[J]. J Cutan Med Surg, 2024, 28(3):276-286. doi:10.1177/12034754241239050.
|
[32] |
TIAN C, ZHANG G, XIA Z, et al. Identification of triazolopyridine derivatives as a new class of AhR agonists and evaluation of anti-psoriasis effect in a mouse model[J]. Eur J Med Chem, 2022,231:114122. doi:10.1016/j.ejmech.2022.114122.
|
[33] |
ZHANG G, XIA Z, TIAN C, et al. Discovery of 5-((1H-indazol-3-yl) methylene)-2-thioxoimidazolidin-4-one derivatives as a new class of AHR agonists with anti-psoriasis activity in a mouse model[J]. Bioorg Med Chem Lett, 2023,92:129383. doi:10.1016/j.bmcl.2023.129383.
|
[34] |
SROKA-TOMASZEWSKA J, TRZECIAK M. Molecular mechanisms of atopic dermatitis pathogenesis[J]. Int J Mol Sci, 2021, 22(8):4130. doi:10.3390/ijms22084130.
|
[35] |
FADADU R P, ABUABARA K, BALMES J R, et al. Air pollution and atopic dermatitis, from molecular mechanisms to population-level evidence:a review[J]. Int J Environ Res Public Health, 2023, 20(3):2526. doi:10.3390/ijerph20032526.
|
[36] |
SMITS J, EDERVEEN T, RIKKEN G, et al. Targeting the cutaneous microbiota in atopic dermatitis by coal tar via AHR-dependent induction of antimicrobial peptides[J]. J Invest Dermatol, 2020, 140(2):415-424. doi:10.1016/j.jid.2019.06.142.
|
[37] |
PALLER A S, STEIN G L, SOUNG J, et al. Efficacy and patient-reported outcomes from a phase 2b,randomized clinical trial of tapinarof cream for the treatment of adolescents and adults with atopic dermatitis[J]. J Am Acad Dermatol, 2021, 84(3):632-638. doi:10.1016/j.jaad.2020.05.135.
|
[38] |
AHN Y M, SHIN S, JANG J H, et al. Bojungikgi-tang improves skin barrier function and immune response in atopic dermatitis mice fed a low aryl hydrocarbon receptor ligand diet[J]. Chin Med, 2023, 18(1):100. doi:10.1186/s13020-023-00806-9.
|
[39] |
BANGASH Y, SALEEM A, AKHTAR M F, et al. Pterostilbene reduces the progression of atopic dermatitis via modulating inflammatory and oxidative stress biomarkers in mice[J]. Inflammopharmacology, 2023, 31(3):1289-1303. doi:10.1186/s13020-023-00806-9.
|
[40] |
PENG G, TSUKAMOTO S, IKUTAMA R, et al. Human beta-defensin-3 attenuates atopic dermatitis-like inflammation through autophagy activation and the aryl hydrocarbon receptor signaling pathway[J]. J Clin Invest, 2022, 132(17):e156501. doi:10.1172/JCI156501.
|
[41] |
PREDA-NAUMESCU A, AHMED H N, MAYO T T, et al. Hidradenitis suppurativa:pathogenesis,clinical presentation,epidemiology,and comorbid associations[J]. Int J Dermatol, 2021, 60(11):e449-e458. doi:10.1111/ijd.15579.
|
[42] |
MORAN B, SWEENEY C M, HUGHES R, et al. Hidradenitis suppurativa is characterized by dysregulation of the Th17:Treg cell axis,which is corrected by anti-TNF therapy[J]. J Invest Dermatol, 2017, 137(11):2389-2395. doi:10.1016/j.jid.2017.05.033.
|
[43] |
DAJNOKI Z, SOMOGYI O, MEDGYESI B, et al. Primary alterations during the development of hidradenitis suppurativa[J]. J Eur Acad Dermatol Venereol, 2022, 36(3):462-471. doi:10.1111/jdv.17779.
|
[44] |
ROTHHAMMER V, QUINTANA F J. The aryl hydrocarbon receptor:an environmental sensor integrating immune responses in health and disease[J]. Nat Rev Immunol, 2019, 19(3):184-197. doi:10.1038/s41577-019-0125-8.
|
[45] |
SZELEST M, WALCZAK K, PLECH T. A new insight into the potential role of tryptophan-derived AhR ligands in skin physiological and pathological processes[J]. Int J Mol Sci, 2021, 22(3):1104. doi:10.3390/ijms22031104.
|
[46] |
HUNT A, QIAN V, OLDS H, et al. The current clinical trial landscape for hidradenitis suppurativa:A narrative review[J]. Dermatol Ther(Heidelb), 2023, 13(7):1391-1407. doi:10.1007/s13555-023-00935-x.
|