天津医药 ›› 2024, Vol. 52 ›› Issue (12): 1233-1238.doi: 10.11958/20240846
• 细胞与分子生物学 • 下一篇
收稿日期:
2024-07-01
修回日期:
2024-09-23
出版日期:
2024-12-15
发布日期:
2024-12-17
通讯作者:
△E-mail:作者简介:
缪春波(1984),男,副主任医师,主要从事冠心病介入治疗方面研究。E-mail:
MIAO Chunbo(), XU Yingchun△(
), CHANG Yifang
Received:
2024-07-01
Revised:
2024-09-23
Published:
2024-12-15
Online:
2024-12-17
Contact:
△E-mail:缪春波, 许迎春, 常以芳. 根皮苷通过下调miR-125a-5p减轻缺氧/复氧诱导的H9C2细胞氧化应激和凋亡[J]. 天津医药, 2024, 52(12): 1233-1238.
MIAO Chunbo, XU Yingchun, CHANG Yifang. Phlorizin allevistes oxidative stress and apoptosis of rat cardiac myocytes H9C2 induced by hypoxia/reoxygenation by down-regulating miR-125a-5p[J]. Tianjin Medical Journal, 2024, 52(12): 1233-1238.
摘要:
目的 探讨根皮苷对缺氧/复氧(H/R)诱导的大鼠心肌细胞H9C2凋亡和氧化应激的影响及可能机制。方法 体外培养H9C2细胞,用16、32、64 μmol/L根皮苷预处理或转染anti-miR-125a-5p、anti-miR-NC、miR-125a-5p模拟物、模拟物阴性对照后建立H/R模型。CCK-8法测定细胞增殖,流式细胞术评估细胞凋亡,Western blot测定B淋巴细胞瘤-2(Bcl-2)蛋白和Bcl-2相关X(Bax)蛋白表达,比色法检测乳酸脱氢酶(LDH)释放量和超氧化物歧化酶(SOD)活性,实时荧光定量PCR(qRT-PCR)检测细胞中微小RNA-125a-5p(miR-125a-5p)表达。结果 与H/R组比较,低、中及高剂量根皮苷处理后细胞抑制率、凋亡率、Bax蛋白表达、LDH含量、miR-125a-5p表达依次降低,SOD活性、Bcl-2蛋白表达依次增加(P<0.05)。抑制miR-125a-5p表达后,H/R处理细胞的抑制率、凋亡率、Bax蛋白表达及LDH含量降低,SOD活性、Bcl-2蛋白表达增加(P<0.05)。miR-125a-5p过表达逆转了根皮苷对H/R刺激H9C2细胞凋亡、增殖及氧化应激的作用。结论 根皮苷可能通过降低miR-125a-5p表达来减轻H/R诱导的H9C2细胞的氧化应激和凋亡。
中图分类号:
基因名称 | 引物序列(5'→3') | 产物大小/bp |
---|---|---|
miR-125 a-5p | 上游:ACGGTGCTGGATGTGG CCTTT | 167 |
下游:GGCCAACCGCGAGAAGATGT TTTTTTTT | ||
U6 | 上游:GCTAGAGGCGCTGCCGAC | 93 |
下游:CGTAGAGCTCGCTGGGACG |
表1 引物序列
Tab.1 Primers sequence information
基因名称 | 引物序列(5'→3') | 产物大小/bp |
---|---|---|
miR-125 a-5p | 上游:ACGGTGCTGGATGTGG CCTTT | 167 |
下游:GGCCAACCGCGAGAAGATGT TTTTTTTT | ||
U6 | 上游:GCTAGAGGCGCTGCCGAC | 93 |
下游:CGTAGAGCTCGCTGGGACG |
图2 根皮苷对H/R诱导的H9C2细胞中Bax和Bcl-2蛋白表达的影响 A:con组;B:H/R组;C:H/R+根皮苷L组;D:H/R+根皮苷M组;E:H/R+根皮苷H组。
Fig.2 Effect of phloridin on expression levels of Bax and Bcl-2 proteins in H/R-induced H9C2 cells
组别 | LDH/(U/L) | Bax | Bcl-2 | |
---|---|---|---|---|
con组 | 129.44±15.66 | 0.13±0.01 | 0.78±0.06 | |
H/R组 | 535.55±25.62a | 0.67±0.05a | 0.18±0.02a | |
H/R+根皮苷L组 | 444.65±27.05b | 0.52±0.04b | 0.29±0.03b | |
H/R+根皮苷M组 | 331.67±23.14bc | 0.38±0.03bc | 0.46±0.04bc | |
H/R+根皮苷H组 | 251.73±17.65bcd | 0.24±0.02bcd | 0.56±0.05bcd | |
F | 459.825** | 379.391** | 274.400** | |
组别 | 抑制率/% | 凋亡率/% | SOD/(U/L) | |
con组 | 0.00±0.00 | 6.59±0.28 | 338.86±22.03 | |
H/R组 | 54.92±2.25a | 23.64±1.12a | 57.80±4.60a | |
H/R+根皮苷L组 | 44.76±2.34b | 19.84±0.87b | 102.40±10.39b | |
H/R+根皮苷M组 | 33.38±1.72bc | 15.10±0.85bc | 187.27±9.09bc | |
H/R+根皮苷H组 | 24.14±1.67bcd | 11.39±0.78bcd | 256.77±17.38bcd | |
F | 1 225.229** | 596.470** | 582.878** |
表2 各组氧化应激、凋亡指标及相关蛋白表达水平比较 (n=9,$\bar{x}\pm s$)
Tab.2 Comparison of expression levels of oxidative stress, apoptosis and related proteins between the five groups
组别 | LDH/(U/L) | Bax | Bcl-2 | |
---|---|---|---|---|
con组 | 129.44±15.66 | 0.13±0.01 | 0.78±0.06 | |
H/R组 | 535.55±25.62a | 0.67±0.05a | 0.18±0.02a | |
H/R+根皮苷L组 | 444.65±27.05b | 0.52±0.04b | 0.29±0.03b | |
H/R+根皮苷M组 | 331.67±23.14bc | 0.38±0.03bc | 0.46±0.04bc | |
H/R+根皮苷H组 | 251.73±17.65bcd | 0.24±0.02bcd | 0.56±0.05bcd | |
F | 459.825** | 379.391** | 274.400** | |
组别 | 抑制率/% | 凋亡率/% | SOD/(U/L) | |
con组 | 0.00±0.00 | 6.59±0.28 | 338.86±22.03 | |
H/R组 | 54.92±2.25a | 23.64±1.12a | 57.80±4.60a | |
H/R+根皮苷L组 | 44.76±2.34b | 19.84±0.87b | 102.40±10.39b | |
H/R+根皮苷M组 | 33.38±1.72bc | 15.10±0.85bc | 187.27±9.09bc | |
H/R+根皮苷H组 | 24.14±1.67bcd | 11.39±0.78bcd | 256.77±17.38bcd | |
F | 1 225.229** | 596.470** | 582.878** |
图3 根皮苷对H/R诱导的H9C2细胞中miR-125a-5p表达的影响 A:con组;B:H/R组;C:H/R+根皮苷L组;D:H/R+根皮苷M组;E:H/R+根皮苷H组。n=9,F=1 703.769,P<0.05;a与con组比较,b与H/R组比较,c与H/R+根皮苷L组比较,d与H/R+根皮苷M组比较,P<0.05。
Fig.3 Effect of phloridin on the expression of miR-125a-5p in H/ R-induced H9C2 cells
图5 下调miR-125a-5p对H/R诱导的H9C2细胞中Bax和Bcl-2蛋白表达的影响 A:H/R+anti-miR-NC组;B:H/R+anti-miR-125a-5p组。
Fig.5 Effect of down-regulation of miR-125a-5p on expression levels of Bax and Bcl-2 proteins in H/ R-induced H9C2 cells
组别 | 抑制率/% | 凋亡率/% | SOD/(U/L) | |||
---|---|---|---|---|---|---|
H/R+anti-miR-NC组 | 54.56±2.60 | 23.50±1.68 | 58.20±5.22 | |||
H/R+anti-miR-125a-5p组 | 14.50±1.05 | 9.61±0.65 | 270.28±24.92 | |||
t | 42.860** | 23.133** | 24.989** | |||
组别 | LDH/(U/L) | Bax | Bcl-2 | |||
H/R+anti-miR-NC组 | 541.67±29.72 | 0.67±0.07 | 0.17±0.02 | |||
H/R+anti-miR-125a-5p组 | 196.60±12.91 | 0.18±0.02 | 0.63±0.05 | |||
t | 31.948** | 20.192** | 25.626** |
表3 各组细胞凋亡和氧化应激指标比较 (n=9,$\bar{x}\pm s$)
Tab.3 Comparison of apoptosis and oxidative stress indexes in all groups
组别 | 抑制率/% | 凋亡率/% | SOD/(U/L) | |||
---|---|---|---|---|---|---|
H/R+anti-miR-NC组 | 54.56±2.60 | 23.50±1.68 | 58.20±5.22 | |||
H/R+anti-miR-125a-5p组 | 14.50±1.05 | 9.61±0.65 | 270.28±24.92 | |||
t | 42.860** | 23.133** | 24.989** | |||
组别 | LDH/(U/L) | Bax | Bcl-2 | |||
H/R+anti-miR-NC组 | 541.67±29.72 | 0.67±0.07 | 0.17±0.02 | |||
H/R+anti-miR-125a-5p组 | 196.60±12.91 | 0.18±0.02 | 0.63±0.05 | |||
t | 31.948** | 20.192** | 25.626** |
图7 上调miR-125a-5p降低根皮苷对H/R诱导的H9C2细胞中Bax和Bcl-2蛋白表达的影响 A:H/R+根皮苷+miR-NC组;B:H/R+根皮苷+miR-125a-5p组。
Fig.7 Up-regulation of miR-125a-5p decreased the effect of phloridin on expression levels of Bax and Bcl-2 proteins in H/R-induced H9C2 cells
组别 | 抑制率/% | 凋亡率/% | SOD/(U/L) |
---|---|---|---|
H/R+根皮苷+miR-NC组 | 23.97±2.11 | 11.50±0.81 | 257.96±22.28 |
H/R+根皮苷+miR-125a-5p组 | 48.89±3.24 | 21.99±0.85 | 78.14±10.61 |
t | 19.335** | 26.803** | 21.861** |
组别 | LDH/(U/L) | Bax | Bcl-2 |
H/R+根皮苷+miR-NC组 | 246.94±23.15 | 0.24±0.03 | 0.57±0.04 |
H/R+根皮苷+miR-125a-5p组 | 497.55±23.24 | 0.54±0.05 | 0.24±0.03 |
t | 22.920** | 15.435** | 19.800** |
表4 2组细胞凋亡和氧化应激指标比较 (n=9,$\bar{x}\pm s$)
Tab.4 Comparison of apoptosis and oxidative stress indexes between the two groups
组别 | 抑制率/% | 凋亡率/% | SOD/(U/L) |
---|---|---|---|
H/R+根皮苷+miR-NC组 | 23.97±2.11 | 11.50±0.81 | 257.96±22.28 |
H/R+根皮苷+miR-125a-5p组 | 48.89±3.24 | 21.99±0.85 | 78.14±10.61 |
t | 19.335** | 26.803** | 21.861** |
组别 | LDH/(U/L) | Bax | Bcl-2 |
H/R+根皮苷+miR-NC组 | 246.94±23.15 | 0.24±0.03 | 0.57±0.04 |
H/R+根皮苷+miR-125a-5p组 | 497.55±23.24 | 0.54±0.05 | 0.24±0.03 |
t | 22.920** | 15.435** | 19.800** |
[1] | XU J, YU D, BAI X, et al. Long non-coding RNA growth arrest specific transcript 5 acting as a sponge of MicroRNA-188-5p to regulate SMAD family member 2 expression promotes myocardial ischemia-reperfusion injury[J]. Bioengineered, 2021, 12(1):6674-6686. doi:10.1080/21655979.2021.1957524. |
[2] | WU H J, ZHANG K, MA J J, et al. Mechanism of curcumin against myocardial ischaemia-reperfusion injury based on the P13K/Akt/mTOR signalling pathway[J]. Eur Rev Med Pharmacol Sci, 2021, 25(17):5490-5499. doi:10.26355/eurrev_202109_26658. |
[3] | 马琮鉴, 高健美, 孔浩, 等. 根皮苷药理作用研究进展[J]. 医药导报, 2020, 39(3):360-364. |
MA C J, GAO J M, KONG H, et al. Research progress of pharmacological effects of phlorizin[J]. Herald of Medicine, 2020, 39(3):360-364. doi:10.3870/j.issn.1004-0781.2020.03.019. | |
[4] | 高健美, 雷鸣, 刘双, 等. 根皮苷对过氧化氢诱导损伤PC12细胞的保护作用[J]. 中国新药与临床杂志, 2016, 35(12):886-889. |
GAO J M, LEI M, LIU S, et al. Protective effects of phlorizin against hydrogen peroxide- induced injury in PC12 cells[J]. Chinese Journal of New Drugs and Clinical Remedies, 2016, 35(12):886-889. doi:10.14109/j.cnki.xyylc.2016.12.011. | |
[5] | YOSHII A, NAGOSHI T, KASHIWAGI Y, et al. Cardiac ischemia-reperfusion injury under insulin-resistant conditions:SGLT1 but not SGLT2 plays a compensatory protective role in diet-induced obesity[J]. Cardiovasc Diabetol, 2019, 18(1):85. doi:10.1186/s12933-019-0889-y. |
[6] | VADAVANATH PRABHAKARAN V, KOZHIPARAMBIL GOPALAN R. Phloretin alleviates arsenic trioxide-induced apoptosis of H9c2 cardiomyoblasts via downregulation in Ca2+/Calcineurin/NFATc pathway and inflammatory cytokine release[J]. Cardiovasc Toxicol, 2021, 21(8):642-654. doi:10.1007/s12012-021-09655-0. |
[7] | VINEETHA V P, GIRIJA S, SOUMYA R S, et al. Polyphenol-rich apple (Malus domestica L.) peel extract attenuates arsenic trioxide induced cardiotoxicity in H9c2 cells via its antioxidant activity[J]. Food Funct, 2014, 5(3):502-511. doi:10.1039/c3fo60470e. |
[8] | 张少利, 王学惠, 李燕, 等. miR-125a-5p抑制剂对大鼠心肌缺血再灌注损伤的影响[J]. 中西医结合心脑血管病杂志, 2020, 18(8):1231-1236. |
ZHANG S L, WANG X H, LI Y, et al. Effects of miR-125a-5p inhibitors on myocardial ischemia-reperfusion injury in rats[J]. Chinese Journal of Integrative Medicine on Cardio-Cerebrovascular Disease, 2020, 18(8):1231-1236. doi:10.12102/j.issn.1672-1349.2020.08.012. | |
[9] | 赵荫涛, 孙静静, 刘源, 等. miR-125a-5p靶向Scarb1基因对缺氧/复氧心肌细胞损伤的影响及其机制研究[J]. 中华医学遗传学杂志, 2020, 37(9):980-986. |
ZHAO Y T, SUN J J, LIU Y, et al. Effect of miR-125a-5p targeting Scarb1 gene on hypoxia/reoxygenation injury of cardiomyocytes and its mechanism[J]. Chinese Journal of Medical Genetics, 2020, 37(9):980-986. doi:10.3760/cma.j.cn511374-20190821-00422. | |
[10] | CHOI H R, NAM K M, LEE H S, et al. Phlorizin,an active ingredient of eleutherococcus senticosus,increases proliferative potential of keratinocytes with inhibition of MiR135b and increased expression of type Ⅳ collagen[J]. Oxid Med Cell Longev, 2016, 2016:3859721. doi:10.1155/2016/3859721. |
[11] | REN Y, SUN-WATERHOUSE D, OUYANG F, et al. Apple phenolic extracts ameliorate lead-induced cognitive impairment and depression-and anxiety-like behavior in mice by abating oxidative stress,inflammation and apoptosis via the miR-22-3p/SIRT1 axis[J]. Food Funct, 2022, 13(5):2647-2661. doi:10.1039/d1fo03750a. |
[12] | YU Y W, CHEN X, YAN J Y, et al. Phlorizin,a novel caloric restriction mimetic,stimulates hypoxia and protects cardiomyocytes through activating autophagy via modulating the Hif-1α/Bnip3 axis in sepsis-induced myocardial dysfunction[J]. Int Immunopharmacol, 2024, 126:111241. doi:10.1016/j.intimp.2023.111241. |
[13] | 井紫薇, 樊钊, 李光耀, 等. miR-125a-5p通过靶向HIF1AN调控HIF-1α参与小胶质细胞活化[J]. 空军军医大学学报, 2023, 44(4):311-316,322. |
JING Z W, FAN Z, LI G Y, et al. miR-125a-5p is involved in microglial activation by regulating HIF-1α through targeting HIF1AN[J]. Journal of Air Force Medical University, 2023, 44(4):311-316,322. doi:10.13276/j.issn.2097-1656.2023.04.005. | |
[14] | 吴章, 吕望, 陈新国, 等. 参麦注射液预处理对缺氧/复氧心肌细胞的微小RNA-103表达的影响及其机制研究[J]. 中国临床药理学杂志, 2020, 36(4):424-427. |
WU Z, LYU W, CHEN X G, et al. Effect and mechanism of Shenmai Injection pretreatment on the expression of miR-103 in the myocardial hypoxia/reoxygenation injury[J]. The Chinese Journal of Clinical Pharmacology, 2020, 36(4):424-427. doi:10.13699/j.cnki.1001-6821.2020.04.011. | |
[15] | ZHANG Y, ZHAN B, HU Y, et al. Sevoflurane inhibits the apoptosis of hypoxia/reoxygenation-induced cardiomyocytes via regulating miR-27a-3p-mediated autophagy[J]. J Pharm Pharmacol, 2021, 73(11):1470-1479. doi:10.1093/jpp/rgab111. |
[16] | 魏娜, 李思源, 高苑, 等. 麝香保心丸对缺氧复氧心肌细胞的保护作用及凋亡的影响[J]. 天津医药, 2023, 51(5):460-463. |
WEI N, LI S Y, GAO Y, et al. Protective effect of Shexiang Baoxin Pill on hypoxia-reoxygenation cardiomyocytes and its effect on apoptosis[J]. Tianjin Med J, 2023, 51(5):460-463. doi:10.11958/20221264. | |
[17] | ZHANG Q, DANG Y Y, LUO X, et al. Kazinol B protects H9c2 cardiomyocytes from hypoxia/reoxygenation-induced cardiac injury by modulating the AKT/AMPK/Nrf2 signalling pathway[J]. Pharm Biol, 2023, 61(1):362-371. doi:10.1080/13880209.2023.2173247. |
[18] | WANG L N, LI Q, DIAO J Y, et al. MiR-23a is involved in myocardial ischemia/reperfusion injury by directly targeting CX43 and regulating mitophagy[J]. Inflammation, 2021, 44(4):1581-1591. doi:10.1007/s10753-021-01443-w. |
[19] | BEI Y, LU D, BÄR C, et al. miR-486 attenuates cardiac ischemia/reperfusion injury and mediates the beneficial effect of exercise for myocardial protection[J]. Mol Ther, 2022, 30(4):1675-1691. doi:10.1016/j.ymthe.2022.01.031. |
[20] | 朱传英, 刘敏, 菅向东. miR-125b-5p通过靶向钙通道电压依赖性β1蛋白调控心衰模型心肌细胞凋亡的机制研究[J]. 中华生物医学工程杂志, 2019, 25(1):24-29. |
ZHU C Y, LIU M, JIAN X D. miR-125b-5p regulates cardiomyocyte apoptosis in heart failure model by targeting CACNB1:a mechanistic study[J]. Chinese Journal of Biomedical Engineering, 2019, 25(1):24-29. doi:10.3760/cma.j.issn.1674-1927.2019.01.005. |
[1] | 钟玉梅, 周海燕, 张敏. ASIC1a介导类风湿关节炎软骨细胞损伤机制的研究进展[J]. 天津医药, 2024, 52(9): 1004-1008. |
[2] | 梁大敏, 杨正久, 张子萍, 钱静, 毛朝坤. 山萘酚逆转肝癌耐药细胞Bel-7402/5-Fu的作用机制研究[J]. 天津医药, 2024, 52(9): 900-906. |
[3] | 肖小丽, 谢瑶, 龙志. 丙型肝炎患者血清miR-155、miR-205-5p水平变化及诊断价值[J]. 天津医药, 2024, 52(9): 967-970. |
[4] | 方杰, 黄芮, 郑红慧, 贾倩倩, 鲍静. miR-9-5p靶向TIMP2诱导多发性骨髓瘤细胞自噬和凋亡的机制[J]. 天津医药, 2024, 52(8): 785-790. |
[5] | 王欣爽, 安亚娟, 管秀菊, 李娇, 刘玥, 魏丽萍, 齐新. 异甘草酸镁改善顺铂诱导的大鼠心肌损伤[J]. 天津医药, 2024, 52(8): 809-814. |
[6] | 杨睿, 魏琼, 孙逸坤, 赵梦竹, 程序, 刘梦华, 张冬梅. 缺氧H9c2来源外泌体对HUVEC增殖、迁移和成管能力的影响[J]. 天津医药, 2024, 52(7): 714-719. |
[7] | 吴波, 朱卓农, 郑丽娟, 陈俊如. 苦参碱对特应性皮炎炎症、氧化应激和伤口愈合的影响[J]. 天津医药, 2024, 52(6): 566-571. |
[8] | 刘丹阳, 李永涛, 张海燕, 李林, 刘洋, 沈雷. 乳腺癌细胞条件培养基对骨髓间充质干细胞生物学行为的影响[J]. 天津医药, 2024, 52(5): 454-458. |
[9] | 肖锦亮, 汪威廉, 但家朋. 瑞马唑仑调节EPAC1/RAP1信号通路对急性心肌梗死大鼠心肌损伤的影响[J]. 天津医药, 2024, 52(5): 475-479. |
[10] | 吴纪昆, 徐榕笛, 许景涵, 王乐, 丛洪良. 6种常见模型评分对NSTEMI患者远期预后预测价值的验证和比较[J]. 天津医药, 2024, 52(5): 541-547. |
[11] | 黎敏, 龚坚, 吴伟伟, 刘巧. Nrf2/HO-1通路在银屑病中作用的研究进展[J]. 天津医药, 2024, 52(5): 552-556. |
[12] | 解有成, 王菲, 徐进, 于晓辉. SIRT1在糖尿病心肌病发病中的研究进展[J]. 天津医药, 2024, 52(4): 443-448. |
[13] | 何颖, 张广华, 田立东, 于泳浩. 富氢液通过增加自噬治疗大鼠神经病理性疼痛[J]. 天津医药, 2024, 52(3): 261-265. |
[14] | 陈静, 魏运姣, 罗超, 黄利华, 陈橙, 段莎莎. 基于Nrf2/ARE抗氧化应激途径探究乌梅丸对溃疡性结肠炎小鼠的作用机制[J]. 天津医药, 2024, 52(3): 278-254. |
[15] | 李晓卫, 高静, 刘寅, 高明东, 肖健勇. 早期与晚期支架内血栓致4b型急性心肌梗死患者临床结局比较[J]. 天津医药, 2024, 52(3): 290-296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||