[1] |
WANG L, PENG W, ZHAO Z, et al. Prevalence and treatment of diabetes in China,2013-2018[J]. JAMA, 2021, 326(24):2498-2506. doi:10.1001/jama.2021.22208.
|
[2] |
中华医学会骨质疏松和骨矿盐疾病分会. 中国骨质疏松症流行病学调查及“健康骨骼”专项行动结果发布[J]. 中华骨质疏松和骨矿盐疾病杂志, 2019, 12(4):317-318.
|
|
Osteoporosis and Bone Mineral Salt Disease Branch, Chinese Medical Association. Epidemiological survey of osteoporosis in china and release of results of the “Healthy Bones” special action[J]. Chin J Osteoporos Bone Miner Res, 2019, 12(4):317-318. doi:10.3969/j.issn.1674-2591.2019.04.001.
|
[3] |
VILACA T, EASTELL R, SCHINI M. Osteoporosis in men[J]. Lancet Diabetes Endocrinol, 2022, 10(4):273-283. doi:10.1016/S2213-8587(22)00012-2.
|
[4] |
姜莹莹, 王靖宇, 孔岩, 等. 中性粒细胞/淋巴细胞比值与2型糖尿病患者肾小管损伤的相关性研究[J]. 天津医药, 2022, 50(1):83-87.
|
|
JIANG Y Y, WANG J Y, KONG Y, et al. Correlation between neutrophil/lymphocyte ratio and renal tubular injury in patients with type 2 diabetes mellitus[J]. Tianjin Med J, 2022, 50(1):83-87. doi:10.11958/20211431.
|
[5] |
屠昌明, 田园, 汪鹏程, 等. SII、RAR与AECOPD患者病情严重程度及并发呼吸衰竭的关系[J]. 天津医药, 2024, 52(12):1317-1321.
|
|
TU C M, TIAN Y, WANG P C, et al. Relationship between SII,RAR and severity of disease and respiratory failure in patients with AECOPD[J]. Tianjin Med J, 2024, 52(12):1317-1321. doi:10.11958/20241172.
|
[6] |
周泽霖, 尚奇, 卓航, 等. 男性原发骨质疏松症骨密度与新型炎症指标的相关性[J]. 中国骨质疏松杂志, 2023, 29(5):636-640,646.
|
|
ZHOU Z L, SHANG Q, ZHUO H, et al. Correlation between bone mineral density and new inflammatory markers in male primary osteoporosis[J]. Chin J Osteoporos, 2023, 29(5):636-640. doi:10.3969/j.issn.1006-7108.2023.05.003.
|
[7] |
KANY S, VOLLRATH J T, RELJA B. Cytokines in inflammatory disease[J]. Int J Mol Sci, 2019, 20(23):6008. doi:10.3390/ijms20236008.
|
[8] |
ZHANG W, ZHAO W, LI W, et al. The imbalance of cytokines and lower levels of tregs in elderly male primary osteoporosis[J]. Front Endocrinol(Lausanne), 2022,13:779264. doi:10.3389/fendo.2022.779264.
|
[9] |
SHEU A, GREENFIELD J R, WHITE C P, et al. Assessment and treatment of osteoporosis and fractures in type 2 diabetes[J]. Trends Endocrinol Metab, 2022, 33(5):333-344. doi:10.1016/j.tem.2022.02.006.
|
[10] |
PRASAD T N, ARJUNAN D, PAL R, et al. Diabetes and osteoporosis[J]. Indian J Orthop, 2023, 57(Suppl 1):209-217.
|
[11] |
TRIFAN G, TESTAI F D. Systemic Immune-Inflammation (SII) index predicts poor outcome after spontaneous supratentorial intracerebral hemorrhage[J]. J Stroke Cerebrovasc Dis, 2020, 29(9):105057. doi:10.1016/j.jstrokecerebrovasdis.2020.105057.
|
[12] |
LI H, ZHANG X, ZHANG Q, et al. The relationship between the monocyte-to-lymphocyte ratio and osteoporosis in postmenopausal females with T2DM:a retrospective study in Chinese population[J]. Front Endocrinol(Lausanne), 2023,14:1112534. doi:10.3389/fendo.2023.1112534.
|
[13] |
冯红红, 高飞. 新型炎症因子与原发性骨质疏松症的研究进展[J]. 中国骨质疏松杂志, 2022, 28(1):152-156.
|
|
FENG H H, GAO F. Research progress on novel inflammatory factors and primary osteoporosis[J]. Chin J Osteoporos, 2022, 28(1):152-156. doi:10.3969/j.issn.1006-7108.2022.01.031.
|
[14] |
CHEN S, SUN X, JIN J, et al. Association between inflammatory markers and bone mineral density:a cross-sectional study from NHANES 2007-2010[J]. J Orthop Surg Res, 2023, 18(1):305. doi:10.1186/s13018-023-03795-5.
|
[15] |
KARNIK S J, NAZZAL M K, KACENA M A, et al. Megakaryocyte secreted factors regulate bone marrow niche cells during skeletal homeostasis,aging,and disease[J]. Calcif Tissue Int, 2023, 113(1):83-95. doi:10.1007/s00223-023-01095-y.
|
[16] |
STAVNICHUK M, KOMAROVA S V. Megakaryocyte-bone cell interactions:lessons from mouse models of experimental myelofibrosis and related disorders[J]. Am J Physiol Cell Physiol, 2022, 322(2):C177-C184. doi:10.1152/ajpcell.00328.2021.
|
[17] |
JIANG Y, ZHU Y, SHAO Y, et al. Platelet-derived apoptotic vesicles promote bone regeneration via golgi phosphoprotein 2(GOLPH2)-AKT signaling axis[J]. ACS Nano, 2023, 17(24):25070-25090. doi:10.1021/acsnano.3c07717.
|
[18] |
刘洋, 王文波. 富血小板血浆在骨修复中的机制及应用[J]. 临床与病理杂志, 2019, 39(9):2041-2046.
|
|
LIU Y, WANG W B. Mechanism and application of platelet-rich plasma in bone repair[J]. J Clin Pathol Res, 2019, 39(9):2041-2046. doi:10.3978/j.issn.2095-6959.2019.09.031.
|
[19] |
KUMAR A, MAHENDRA J, MAHENDRA L, et al. Synergistic effect of biphasic calcium phosphate and platelet-rich fibrin attenuate markers for inflammation and osteoclast differentiation by suppressing NF-κB/MAPK signaling pathway in chronic periodontitis[J]. Molecules, 2021, 26(21):6578. doi:10.3390/ molecules26216578.
|
[20] |
SALAMANNA F, MAGLIO M, SARTORI M, et al. Platelet features and derivatives in osteoporosis:a rational and systematic review on the best evidence[J]. Int J Mol Sci, 2020, 21(5):1762. doi:10.3390/ijms21051762.
|
[21] |
FRASE D, LEE C, NACHIAPPAN C, et al. The inflammatory contribution of B-lymphocytes and neutrophils in progression to osteoporosis[J]. Cells, 2023, 12(13):1744. doi:10.3390/cells12131744.
|
[22] |
LI J, YAO Z, LIU X, et al. TGFβ1+CCR5+ neutrophil subset increases in bone marrow and causes age-related osteoporosis in male mice[J]. Nat Commun, 2023, 14(4):159. doi:10.1038/s41467-023-35801-z.
|