| [1] | 
																						 
											  LEE P J, PAPACHRISTOU G I. New insights into acute pancreatitis[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8):479-496. doi:10.1038/s41575-019-0158-2. 
											 | 
										
																													
																						| [2] | 
																						 
											  MEDEROS M A, REBER H A, GIRGIS M D. Acute pancreatitis:a review[J]. JAMA, 2021, 325(4):382-390. doi:10.1001/jama.2020.20317.
											 | 
										
																													
																						| [3] | 
																						 
											  CORDIANO R, DI GIOACCHINO M, MANGIFESTA R, et al. Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases:an update[J]. Molecules, 2023, 28(16):5979. doi:10.3390/molecules28165979.
											 | 
										
																													
																						| [4] | 
																						 
											  IVANOV A V, BARTOSCHH B, ISAGULIANTS M G. Oxidative stress in infection and consequent disease[J]. Oxid Med Cell Longev, 2017,2017:3496043. doi:10.1155/2017/3496043.
											 | 
										
																													
																						| [5] | 
																						 
											  JAKUBCZYK K, DEC K, KALDUNSKA J, et al. Reactive oxygen species-sources,functions,oxidative damage[J]. Pol Merkur Lekarski, 2020, 48(284):124-127. doi:10.1155/2012/217037.
											 | 
										
																													
																						| [6] | 
																						 
											  SIES H, JONES D P. Reactive oxygen species(ROS)as pleiotropic physiological signalling agents[J]. Nat Rev Mol Cell Biol, 2020, 21(7):363-383. doi:10.1038/s41580-020-0230-3.
											 | 
										
																													
																						| [7] | 
																						 
											  SHI Z, WANG Y, YE W, et al. The LipoxinA4 receptor agonist BML-111 ameliorates intestinal disruption following acute pancreatitis through the Nrf2-regulated antioxidant pathway[J]. Free Radic Biol Med, 2021, 163:379-391. doi:10.1016/j.freeradbiomed.2020.12.232.
											 | 
										
																													
																						| [8] | 
																						 
											  SIRIVIRIYAKUL P, SRIKO J, SOMANAWAT K, et al. Genistein attenuated oxidative stress,inflammation,and apoptosis in L-arginine induced acute pancreatitis in mice[J]. BMC Complement Med Ther, 2022, 22(1):208. doi:10.1186/s12906-022-03689-9.
											 | 
										
																													
																						| [9] | 
																						 
											  YAO Q, JIANG X, ZHAI Y Y, et al. Protective effects and mechanisms of bilirubin nanomedicine against acute pancreatitis[J]. J Control Release, 2020, 322:312-325. doi:10.1016/j.jconrel.2020.03.034.
											 | 
										
																													
																						| [10] | 
																						 
											  NIEDERAU C, KLONOWSKI H, SCHULZ H U, et al. Oxidative injury to isolated rat pancreatic acinar cells vs. isolated zymogen granules[J]. Free Radic Biol Med, 1996, 20(7):877-886. doi:10.1016/0891-5849(95)02153-1.
											 | 
										
																													
																						| [11] | 
																						 
											  SEVILLANO S, DE LA MANO A M, Manso M A, et al. N-acetylcysteine prevents intra-acinar oxygen free radical production in pancreatic duct obstruction-induced acute pancreatitis[J]. Biochim Biophys Acta, 2003, 1639(3):177-184. doi:10.1016/j.bbadis.2003.09.003. 
											 | 
										
																													
																						| [12] | 
																						 
											  MUKHERJEE R, CRIDDLE D N, GUKOVSKAYA A, et al. Mitochondrial injury in pancreatitis[J]. Cell Calcium, 2008, 44(1):14-23. doi:10.1016/j.ceca.2007.11.013. 
											 | 
										
																													
																						| [13] | 
																						 
											  REN Y, LIU W, ZHANG L, et al. Milk fat globule EGF factor 8 restores mitochondrial function via integrin-medicated activation of the FAK-STAT3 signaling pathway in acute pancreatitis[J]. Clin Transl Med, 2021, 11(2):e295. doi:10.1002/ctm2.295. 
											 | 
										
																													
																						| [14] | 
																						 
											  ZHENG X, ZHAO J, WANG S, et al. Research progress of antioxidant nanomaterials for acute pancreatitis[J]. Molecules, 2022, 27(21):7238. doi:10.3390/molecules27217238.
											 | 
										
																													
																						| [15] | 
																						 
											  HUANGFU Y, YU X, WAN C, et al. Xanthohumol alleviates oxidative stress and impaired autophagy in experimental severe acute pancreatitis through inhibition of AKT/mTOR[J]. Front Pharmacol, 2023,14:1105726. doi:10.3389/fphar.2023.1105726.
											 | 
										
																													
																						| [16] | 
																						 
											  CHOI S, KIM H. The remedial potential of lycopene in pancreatitis through regulation of autophagy[J]. Int J Mol Sci, 2020, 21(16):5775. doi:10.3390/ijms21165775.
											 | 
										
																													
																						| [17] | 
																						 
											  HENNIG P, GARSTKIEWICZ M, GROSSI S, et al. The crosstalk between Nrf2 and Inflammasomes[J]. Int J Mol Sci, 2018, 19(2):562. doi:10.3390/ijms19020562.
											 | 
										
																													
																						| [18] | 
																						 
											  YANG X, YAO L, YUAN M, et al. Transcriptomics and network pharmacology reveal the protective effect of Chaiqin Chengqi Decoction on obesity-related alcohol-induced acute pancreatitis via oxidative stress and PI3K/Akt signaling pathway[J]. Front Pharmacol, 2022,13:896523. doi:10.3389/fphar.2022.896523.
											 | 
										
																													
																						| [19] | 
																						 
											  MEI Q X, HU J H, HUANG Z H, et al. Pretreatment with chitosan oligosaccharides attenuate experimental severe acute pancreatitis via inhibiting oxidative stress and modulating intestinal homeostasis[J]. Acta Pharmacol Sin, 2021, 42(6):942-953. doi:10.1038/s41401-020-00581-5.
											 | 
										
																													
																						| [20] | 
																						 
											  QIU M, HUANG Y, ZHOU X, et al. Hyperlipidemia exacerbates acute pancreatitis via interactions between P38MAPK and oxidative stress[J]. Cell Signal, 2025,125:111504. doi:10.1016/j.cellsig.2024.111504.
											 | 
										
																													
																						| [21] | 
																						 
											  BOPANNA S, NAYAK B, PRAKASH S, et al. Increased oxidative stress and deficient antioxidant levels may be involved in the pathogenesis of idiopathic recurrent acute pancreatitis[J]. Pancreatology, 2017, 17(4):529-533. doi:10.1016/j.pan.2017.06.009. 
											 | 
										
																													
																						| [22] | 
																						 
											  THAREJA S, BHARDWAJ P, SATEESH J, et al. Variations in the levels of oxidative stress and antioxidants during early acute pancreatitis[J]. Trop Gastroenterol, 2009, 30(1):26-31. doi:10.1097/01.tjo.0000324659.09866.1c. 
											 | 
										
																													
																						| [23] | 
																						 
											  PARK B K, CHUNG J B, LEE J H, et al. Role of oxygen free radicals in patients with acute pancreatitis[J]. World J Gastroenterol, 2003, 9(10):2266-2269. doi:10.3748/wjg.v9.i10.2266.
											 | 
										
																													
																						| [24] | 
																						 
											  SILVA-VAZ P, JARAK I, RATO L, et al. Plasmatic oxidative and metabonomic profile of patients with different degrees of biliary acute pancreatitis severity[J]. Antioxidants(Basel), 2021, 10(6):988. doi:10.3390/antiox10060988.
											 | 
										
																													
																						| [25] | 
																						 
											  XU Y, SONG J, GAO J, et al. Identification of biomarkers associated with oxidative stress and immune cells in acute pancreatitis[J]. J Inflamm Res, 2024, 17:4077-4091. doi:10.2147/JIR.S459044. 
											 | 
										
																													
																						| [26] | 
																						 
											  CHEN J, ZHU X, WANG Z, et al. Inhibition of aquaporin-9 ameliorates severe acute pancreatitis and associated lung injury by NLRP3 and Nrf2/HO-1 pathways[J]. Int Immunopharmacol, 2024,137:112450. doi:10.1016/j.intimp.2024.112450.
											 | 
										
																													
																						| [27] | 
																						 
											  MA Z, XIE W, LUO T, et al. Exosomes from TNF-alpha preconditioned human umbilical cord mesenchymal stromal cells inhibit the autophagy of acinar cells of severe acute pancreatitis via shuttling bioactive metabolites[J]. Cell Mol Life Sci, 2023, 80(9):257. doi:10.1007/s00018-023-04861-1.
											 | 
										
																													
																						| [28] | 
																						 
											  ALRUHAIMI R S, HASSANEIN E, ABD E M, et al. The melatonin receptor agonist agomelatine protects against acute pancreatitis induced by cadmium by attenuating inflammation and oxidative stress and modulating Nrf2/HO-1 pathway[J]. Int Immunopharmacol, 2023, 124(Pt A):110833. doi:10.1016/j.intimp.2023.110833.
											 | 
										
																													
																						| [29] | 
																						 
											  BANSOD S, CHILVERY S, SAIFI M A, et al. Borneol protects against cerulein-induced oxidative stress and inflammation in acute pancreatitis mice model[J]. Environ Toxicol, 2021, 36(4):530-539. doi:10.1002/tox.23058. 
											 | 
										
																													
																						| [30] | 
																						 
											  ALI B M, AL-MOKADDEM A K, SELIM H, et al. Pinocembrin's protective effect against acute pancreatitis in a rat model:The correlation between TLR4/NF-kappaB/NLRP3 and miR-34a-5p/SIRT1/Nrf2/HO-1 pathways[J]. Biomed Pharmacother, 2024,176:116854. doi:10.1016/j.biopha.2024.116854.
											 | 
										
																													
																						| [31] | 
																						 
											  YANG J, SHA X, WU D, et al. Formononetin alleviates acute pancreatitis by reducing oxidative stress and modulating intestinal barrier[J]. Chin Med, 2023, 18(1):78. doi:10.1186/s13020-023-00773-1.
											 | 
										
																													
																						| [32] | 
																						 
											  YAO J, MIAO Y, ZHANG Y, et al. Dao-Chi powder ameliorates pancreatitis-induced intestinal and cardiac injuries via regulating the Nrf2-HO-1-HMGB1 signaling pathway in rats[J]. Front Pharmacol, 2022,13:922130. doi:10.3389/fphar.2022.922130.
											 | 
										
																													
																						| [33] | 
																						 
											  JIN H, ZHAO K, LI J, et al. Matrine alleviates oxidative stress and ferroptosis in severe acute pancreatitis-induced acute lung injury by activating the UCP2/SIRT3/PGC1alpha pathway[J]. Int Immunopharmacol, 2023,117:109981. doi:10.1016/j.intimp.2023.109981.
											 | 
										
																													
																						| [34] | 
																						 
											  ZHANG D, LI L, LI J, et al. Colchicine improves severe acute pancreatitis-induced acute lung injury by suppressing inflammation,apoptosis and oxidative stress in rats[J]. Biomed Pharmacother, 2022,153:113461. doi:10.1016/j.biopha.2022.113461.
											 | 
										
																													
																						| [35] | 
																						 
											  CAI Y, CAO Q, LI J, et al. Targeting and functional effects of biomaterials-based nanoagents for acute pancreatitis treatment[J]. Front Bioeng Biotechnol, 2022,10:1122619. doi:10.3389/fbioe.2022.1122619.
											 | 
										
																													
																						| [36] | 
																						 
											  XIE P, ZHANG L, SHEN H, et al. Biodegradable MoSe(2)‑polyvinylpyrrolidone nanoparticles with multi-enzyme activity for ameliorating acute pancreatitis[J]. J Nanobiotechnology, 2022, 20(1):113. doi:10.1186/s12951-022-01288-x.
											 | 
										
																													
																						| [37] | 
																						 
											  ABDEL-HAKEEM E A, ABDEL-HAMID H A, ABDEL HAFEZ S M N.  The possible protective effect of Nano-Selenium on the endocrine and exocrine pancreatic functions in a rat model of acute pancreatitis[J]. J Trace Elem Med Biol, 2020,60:126480. doi:10.1016/j.jtemb.2020.126480.
											 | 
										
																													
																						| [38] | 
																						 
											  MEI Q, DENG G, HUANG Z, et al. Porous COS@SiO(2) nanocomposites ameliorate severe acute pancreatitis and associated lung injury by regulating the Nrf2 signaling pathway in mice[J]. Front Chem, 2020,8:720. doi:10.3389/fchem.2020.00720.
											 | 
										
																													
																						| [39] | 
																						 
											  HASSANZADEH P, ARBABI E, ROSTAMI F. Coating of ferulic acid-loaded silk fibroin nanoparticles with neutrophil membranes:A promising strategy against the acute pancreatitis[J]. Life Sci, 2021,270:119128. doi:10.1016/j.lfs.2021.119128.
											 |