[1] |
BIELEWICZ J, KAMIENIAK M, SZYMONIUK M, et al. Diagnosis and management of neuropathic pain in spine diseases[J]. J Clin Med, 2023, 12(4):1380. doi:10.3390/jcm12041380.
|
[2] |
ZIEGLER K, FOLKARD R, GONZALEZ A J, et al. Primary somatosensory cortex bidirectionally modulates sensory gain and nociceptive behavior in a layer-specific manner[J]. Nat Commun, 2023, 14(1):2999. doi:10.1038/s41467-023-38798-7.
|
[3] |
CHEN C, SUN L, ADLER A, et al. Synchronized activity of sensory neurons initiates cortical synchrony in a model of neuropathic pain[J]. Nat Commun, 2023, 14(1):689. doi:10.1038/s41467-023-36093-z.
|
[4] |
JI R R, DONNELLY C R, NEDERGAARD M. Astrocytes in chronic pain and itch[J]. Nat Rev Neurosci, 2019, 20(11):667-685. doi:10.1038/s41583-019-0218-1.
|
[5] |
HAYNES P R, PYFROM E S, LI Y, et al. A neuron-glia lipid metabolic cycle couples daily sleep to mitochondrial homeostasis[J]. Nat Neurosci, 2024, 27(4):666-678. doi:10.1038/s41593-023-01568-1.
|
[6] |
DOYLE T M, SALVEMINI D. Mini-review:mitochondrial dysfunction and chemotherapy-induced neuropathic pain[J]. Neurosci Lett, 2021,760:136087. doi:10.1016/j.neulet.2021.136087.
|
[7] |
赵佳佳, 万文军, 杨荷雨, 等. ANA-12靶向抑制BDNF/TrkB信号缓解奥沙利铂诱导化疗大鼠的痛觉行为[J]. 天津医药, 2023, 51(1):35-40.
|
|
ZHAO J J, WAN W J, YANG H Y, et al. ANA-12 relieves oxaliplatin-induced chemotherapy pain in rats by targetly inhibiting BDNF/TrkB signal[J]. Tianjin Med J, 2023, 51(1):35-40. doi:10.11958/20220518.
|
[8] |
袁满, 冯子瀚, 谢敏, 等. 大黄素对骨关节炎模型小鼠痛觉行为的调节机制[J]. 天津医药, 2024, 52(6):572-577.
|
|
YUAN M, FENG Z H, XIE M, et al. Mechanism of emodin modulating pain behavior in mouse model of osteoarthritis[J]. Tianjin Med J, 2024, 52(6):572-577. doi:10.11958/20240056.
|
[9] |
SILVA SANTOS RIBEIRO P, WILLEMEN H, EIJKELKAMP N. Mitochondria and sensory processing in inflammatory and neuropathic pain[J]. Front Pain Res(Lausanne), 2022,3:1013577. doi:10.3389/fpain.2022.1013577.
|
[10] |
LIN Y, CHEN Y, ZENG J, et al. Nodakenetin alleviates inflammatory pain hypersensitivity by suppressing NF-κB signal pathway[J]. Neuroimmunomodulation, 2022, 29(4):486-492. doi:10.1159/000525690.
|
[11] |
YI N, MI Y, XU X, et al. Nodakenin attenuates cartilage degradation and inflammatory responses in a mice model of knee osteoarthritis by regulating mitochondrial Drp1/ROS/NLRP3 axis[J]. Int Immunopharmacol, 2022, 113(Pt A):109349. doi:10.1016/j.intimp.2022.109349.
|
[12] |
康美美, 王蓉. CCI和SNI神经病理性疼痛动物模型的认知功能研究进展[J]. 神经疾病与精神卫生, 2021, 21(11):761-764.
|
|
KANG M M, WANG R. Research progress on the cognitive function of CCI and SNI neuropathic pain models[J]. Journal of Neuroscience and Mental Health, 2021, 21(11):761-764. doi:10.3969/j.issn.1009-6574.2021.11.001.
|
[13] |
梁彦虎, 李雪松, 苑龙, 等. CXCL1/CXCR2与神经性疼痛的相关机制及研究进展[J]. 中国临床实用医学, 2019, 10(1):72-74.
|
|
LIANG Y H, LI X S, YUAN L, et al. The mechanism and research progress of CXCL1/CXCR2 and neuropathic pain[J]. China Clinical Practical Medicine, 2019, 10(1):72-74. doi:10.3760/cma.j.issn.1673-8799.2019.01.023.
|
[14] |
孙晓敏, 张萌, 迟宜嘉, 等. 禁锢应激对小鼠焦虑相关脑区c-Fos表达的影响[J]. 青岛大学学报(医学版), 2020, 56(2):177-180.
|
|
SUN X M, ZHANG M, CHI Y J, et al. Effect of repeated restraint stress on the expression of c-Fos in anxiety-related brain regions in mice[J]. Journal of Qingdao University(Medical Sciences), 2020, 56(2):177-180. doi:10.11712/jms.2096-5532.2020.56.067.
|
[15] |
LOPEZ-RODRIGUEZ A B, HENNESSY E, MURRAY C L, et al. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer's disease:IL-1β drives amplified responses in primed astrocytes and neuronal network dysfunction[J]. Alzheimers Dement, 2021, 17(10):1735-1755. doi:10.1002/alz.12341.
|
[16] |
LI J, WANG L, TAN R, et al. Nodakenin alleviated obstructive nephropathy through blunting Snail1 induced fibrosis[J]. J Cell Mol Med, 2020, 24(17):9752-9763. doi:10.1111/jcmm.15539.
|
[17] |
MU Y, MEI Y, CHEN Y, et al. Perisciatic nerve dexmedetomidine alleviates spinal oxidative stress and improves peripheral mitochondrial dynamic equilibrium in a neuropathic pain mouse model in an AMPK-dependent manner[J]. Dis Markers, 2022,2022:6889676. doi:10.1155/2022/6889676.
|
[18] |
BRIDGES H R, BLAZA J N, YIN Z, et al. Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides[J]. Science, 2023, 379(6630):351-357. doi:10.1126/science.ade3332.
|
[19] |
ZHANG R, HOU T, CHENG H, et al. NDUFAB1 protects against obesity and insulin resistance by enhancing mitochondrial metabolism[J]. FASEB J, 2019, 33(12):13310-13322. doi:10.1096/fj.201901117RR.
|
[20] |
PERUZZOTTI-JAMETTI L, WILLIS C M, KRZAK G, et al. Mitochondrial complex I activity in microglia sustains neuroinflammation[J]. Nature, 2024, 628(8006):195-203. doi:10.1038/s41586-024-07167-9.
|
[21] |
GUO C, YUE Y, WANG B, et al. Anemoside B4 alleviates arthritis pain via suppressing ferroptosis-mediated inflammation[J]. J Cell Mol Med, 2024, 28(4):e18136. doi:10.1111/jcmm.18136.
|
[22] |
PANGA V, KALLOR A A, NAIR A, et al. Mitochondrial dysfunction in rheumatoid arthritis:a comprehensive analysis by integrating gene expression,protein-protein interactions and gene ontology data[J]. PLoS One, 2019, 14(11):e0224632. doi:10.1371/journal.pone.0224632.
|
[23] |
HUNG Y C, HUANG K L, CHEN P L, et al. UQCRC1 engages cytochrome c for neuronal apoptotic cell death[J]. Cell Rep, 2021, 36(12):109729. doi:10.1016/j.celrep.2021.109729.
|