Tianjin Medical Journal ›› 2022, Vol. 50 ›› Issue (8): 892-896.doi: 10.11958/20212285
• Review • Previous Articles
XIE Yunfan(), LIU Mi, TIAN Yi(
)
Received:
2021-11-01
Revised:
2022-04-01
Published:
2022-08-15
Online:
2022-08-12
Contact:
TIAN Yi
E-mail:xieyunfan1vip@163.com;tianyi1975@126.com
XIE Yunfan, LIU Mi, TIAN Yi. Research progress on effects of sevoflurane on apoptosis related signal pathways of hippocampal neurons[J]. Tianjin Medical Journal, 2022, 50(8): 892-896.
CLC Number:
[1] | CHEN X, ZHOU X, YANG L, et al. Neonatal exposure to low-dose(1.2%)sevoflurane increases rats' hippocampal neurogenesis and synaptic plasticity in later life[J]. Neurotox Res, 2018, 34(2):188-197. doi: 10.1007/s12640-018-9877-3. |
[2] | ZUO Y, CHANG Y, THIRUPATHI A, et al. Prenatal sevoflurane exposure:Effects of iron metabolic dysfunction on offspring cognition and potential mechanism[J]. Int J Dev Neurosci, 2021, 81(1):1-9. doi: 10.1002/jdn.10080. |
[3] | YU Q, DAI H, JIANG Y, et al. Sevoflurane alleviates oxygen-glucose deprivation/reoxygenation-induced injury in HT22 cells through regulation of the PI3K/AKT/GSK3β signaling pathway[J]. Exp Ther Med, 202, 21(4):376. doi: 10.3892/etm.2021.9807. |
[4] | YANG Z, YUAN C. IL-17A promotes the neuroinflammation and cognitive function in sevoflurane anesthetized aged rats via activation of NF-κB signaling pathway[J]. BMC Anesthesiol, 2018, 18(1):147. doi: 10.1186/s12871-018-0607-4. |
[5] | SHARMA V K, SINGH T, SINGH S, et al. Apoptotic pathways and alzheimer's disease:probing therapeutic potential[J]. Neurochem Res, 2021, 46(12):3103-3122. doi: 10.1007/s11064-021-03418-7. |
[6] | VIGNESWARA V, AHMED Z. The role of Caspase-2 in regulating cell fate[J]. Cells, 2020, 9(5):1259. doi: 10.3390/cells9051259. |
[7] | OBENG E. Apoptosis(programmed cell death)and its signals - A review[J]. Braz J Biol, 2021, 81(4):1133-1143. doi: 10.1590/1519-6984.228437. |
[8] | LI M, GUO J, WANG H, et al. Involvement of mitochondrial dynamics and mitophagy in sevoflurane-Induced cell toxicity[J]. Oxid Med Cell Longev, 2021, 2021:6685468. doi: 10.1155/2021/6685468. |
[9] | MIRZAYANS R, ANDRAIS B, KUMAR P, et al. The growing complexity of cancer cell response to DNA-damaging agents:caspase 3 mediates cell death or survival?[J]. Int J Mol Sci, 2016, 17(5):708. doi: 10.3390/ijms17050708. |
[10] | KASHYAP D, GARG V K, GOEL N. Intrinsic and extrinsic pathways of apoptosis:Role in cancer development and prognosis[J]. Adv Protein Chem Struct Biol, 2021, 125:73-120. doi: 10.1016/bs.apcsb.2021.01.003. |
[11] | TANG W, WANG W, ZHANG Y, et al. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced chemokine release in both TRAIL-resistant and TRAIL-sensitive cells via nuclear factor kappa B[J]. FEBS J, 2009, 276(2):581-593. doi: 10.1111/j.1742-4658.2008.06809.x. |
[12] | 魏海婷, 任峰, 刘琳琳, 等. TLR4-p38MAPK-NF-κB信号通路在七氟醚降低老龄大鼠认知功能中的作用[J]. 中华麻醉学杂志, 2019, 39(5):561-564. |
WEI H T, REN F, LIU L L, et al. Role of TLR4-p38MAPK-NF-κB signaling pathway in sevoflurane-induced decrease in cognitive function of aged rats[J]. Chin J Anesthesiol, 2019, 39(5):561-564. doi: 10.3760/cma.j.issn.0254-1416.2019. 05.013. | |
[13] | MAO J, HU Y, RUAN L, et al. Role of endoplasmic reticulum stress in depression (Review)[J]. Mol Med Rep, 2019, 20(6):4774-4780. doi: 10.3892/mmr.2019.10789. |
[14] | HAN Y, YUAN M, GUO Y S, et al. Mechanism of endoplasmic reticulum stress in cerebral ischemia[J]. Front Cell Neurosci, 2021, 15:704334. doi: 10.3389/fncel.2021.704334. |
[15] | LIU R, CHEN Y, LIU G, et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers[J]. Cell Death Dis, 2020, 11(9):797. doi: 10.1038/s41419-020-02998-6. |
[16] | SU R, SUN P, ZHANG D, et al. Neuroprotective effect of miR-410-3p against sevoflurane anesthesia-induced cognitive dysfunction in rats through PI3K/Akt signaling pathway via targeting C-X-C motif chemokine receptor 5[J]. Genes Genomics, 2019, 41(10):1223-1231. doi: 10.1007/s13258-019-00851-5. |
[17] | YANG L H, XU Y C, ZHANG W. Neuroprotective effect of CTRP3 overexpression against sevoflurane anesthesia-induced cognitive dysfunction in aged rats through activating AMPK/SIRT1 and PI3K/AKT signaling pathways[J]. Eur Rev Med Pharmacol Sci, 2020, 24(9):5091-5100. doi: 10.26355/eurrev_202005_21202. |
[18] | TIAN Y, GUO S, WU X, et al. Minocycline alleviates sevoflurane-induced cognitive impairment in aged rats[J]. Cell Mol Neurobiol, 2015, 35(4):585-594. doi: 10.1007/s10571-014-0154-6. |
[19] | HEPWORTH E, HINTON S D. Pseudophosphatases as regulators of MAPK signaling[J]. Int J Mol Sci, 2021, 22(22):12595. doi: 10.3390/ijms222212595. |
[20] | YUE J, LÓPEZ J M. Understanding MAPK signaling pathways in apoptosis[J]. Int J Mol Sci, 2020, 21(7):2346. doi: 10.3390/ijms21072346. |
[21] | WANG W W, JIA L J, LUO Y, et al. Location- and subunit-specific NMDA receptors determine the developmental sevoflurane neurotoxicity through ERK1/2 signaling[J]. Mol Neurobiol, 2016, 53(1):216-230. doi: 10.1007/s12035-014-9005-1. |
[22] | LIU T, DONG X, WANG B, et al. Silencing of PTEN inhibits the oxidative stress damage and hippocampal cell apoptosis induced by Sevoflurane through activating MEK1/ERK signaling pathway in infant rats[J]. Cell Cycle, 2020, 19(6):684-696. doi: 10.1080/15384101.2020.1717041. |
[23] | SONG H, XUN S, HE H, et al. Compound porcine cerebroside and ganglioside Injection (CPCGI) attenuates sevoflurane-induced nerve cell injury by regulating the phosphorylation of p38 MAP kinase (p38MAPK)/nuclear factor kappa B(NF-κB)pathway[J]. Med Sci Monit, 2020, 26:e919600. doi: 10.12659/MSM.919600. |
[24] | BI C, CAI Q, SHAN Y, et al. Sevoflurane induces neurotoxicity in the developing rat hippocampus by upregulating connexin 43 via the JNK/c-Jun/AP-1 pathway[J]. Biomed Pharmacother, 2018, 108:1469-1476. doi: 10.1016/j.biopha.2018.09.111. |
[25] | HANG P Z, GE F Q, LI P F, et al. The regulatory role of the BDNF/TrkB pathway in organ and tissue fibrosis[J]. Histol Histopathol, 2021, 36(11):1133-1143. doi: 10.14670/HH-18-368. |
[26] | ZHANG D, XUE B, YOU J, et al. Suberoylanilide hydroxamic acid reversed cognitive and synaptic plasticity impairments induced by sevoflurane exposure in adult mice[J]. Neuroreport, 2019, 30(4):274-279. doi: 10.1097/WNR.0000000000001196. |
[27] | ZHANG T, GUO Q, ZOU W, et al. Neonatal isoflurane exposure induces neurocognitive impairment and abnormal hippocampal histone acetylation in mice[J]. PLoS One, 2015, 10(4): e0125815. doi: 10.1371/journal.pone.0125815 |
[28] | JIA J, ZHU J, YANG Q, et al. The role of histone acetylation in the sevoflurane-induced Inhibition of neurogenesis in the hippocampi of young mice[J]. Neuroscience, 2020, 432:73-83. doi: 10.1016/j.neuroscience.2020.02.023. |
[29] | XU Z, QIAN B. Sevoflurane anesthesia-mediated oxidative stress and cognitive impairment in hippocampal neurons of old rats can be ameliorated by expression of brain derived neurotrophic factor[J]. Neurosci Lett, 2020, 721:134785. doi: 10.1016/j.neulet.2020.134785. |
[30] | LIU C Y, ZHOU Y, CHEN T, et al. AMPK/SIRT1 pathway is involved in arctigenin-mediated protective effects against myocardial ischemia-reperfusion injury[J]. Front Pharmacol, 2021, 11:616813. doi: 10.3389/fphar.2020.616813. |
[31] | YANG X Y, LI Q J, ZHANG W C, et al. AMPK-SIRT1-PGC1α signal pathway influences the cognitive function of aged rats in sevoflurane-induced anesthesia[J]. J Mol Neurosci, 2020, 70(12):2058-2067. doi: 10.1007/s12031-020-01612-w. |
[32] | LIU L, LIU C, FANG L. AMPK‑SIRT1 pathway dysfunction contributes to neuron apoptosis and cognitive impairment induced by sevoflurane[J]. Mol Med Rep, 2021, 23(1):56. doi: 10.3892/mmr.2020.11694. |
[33] | YANG X, YANG S, HONG C, et al. Panax notoginseng saponins attenuates sevoflurane‑induced nerve cell injury by modulating AKT signaling pathway[J]. Mol Med Rep, 2017, 16(5):7829-7834. doi: 10.3892/mmr.2017.7519. |
[34] | WANG Y, WANG C, ZHANG Y, et al. Pre-administration of luteoline attenuates neonatal sevoflurane-induced neurotoxicity in mice[J]. Acta Histochem, 2019, 121(4):500-507. doi: 10.1016/j.acthis.2019.04.004. |
[35] | 康文越, 邢丹丹, 付强, 等. 右美托咪定通过p38通路改善发育期大鼠七氟醚麻醉后认知功能障碍[J]. 中国免疫学杂志, 2020, 36(9):1091-1096. |
KANG W Y, XING D D, FU Q, et al. Dexmedetomidine improves cognitive dysfunction after sevoflurane anesthesia in developing rats through p38 pathway[J]. Chinese Journal of Immunology, 2020, 36(9):1091-1096. doi: 10.3969/j.issn.1000-484X.2020.09.013. | |
[36] | YUE H, HU B, LUO Z, et al. Metformin protects against sevoflurane-induced neuronal apoptosis through the S1P1 and ERK signaling pathways[J]. Exp Ther Med, 2019, 17(2):1463-1469. doi: 10.3892/etm.2018.7098. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||