Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (11): 1164-1169.doi: 10.11958/20230202
• Cell and Molecular Biology • Previous Articles Next Articles
SUN Xugao1(), YANG Wenchao2, LIU Yanjie1,△(
), YANG Xu3
Received:
2023-02-17
Revised:
2023-05-12
Published:
2023-11-15
Online:
2023-11-07
Contact:
△E-mail:SUN Xugao, YANG Wenchao, LIU Yanjie, YANG Xu. Impacts of theaflavin on biological behavior of oral squamous cell carcinoma cells by regulating Snail/Slug signaling pathway[J]. Tianjin Medical Journal, 2023, 51(11): 1164-1169.
CLC Number:
基因名称 | 引物序列(5′→3′) | 产物大小/bp |
---|---|---|
Snail | 上游:TCGGAAGCCTAACTACAGCGA | 160 |
下游:AGATGAGCATTGGCAGCGAG | ||
Slug | 上游:TGTGACAAGGAATATGTGAGCC | 123 |
下游:TGAGCCCTCAGATTTGACCTG | ||
β-actin | 上游:CTCGCCTTTGCCGATCC | 145 |
下游:GGGGTACTTCAGGGTGAGGA |
Tab.1 Primer sequences for qPCR
基因名称 | 引物序列(5′→3′) | 产物大小/bp |
---|---|---|
Snail | 上游:TCGGAAGCCTAACTACAGCGA | 160 |
下游:AGATGAGCATTGGCAGCGAG | ||
Slug | 上游:TGTGACAAGGAATATGTGAGCC | 123 |
下游:TGAGCCCTCAGATTTGACCTG | ||
β-actin | 上游:CTCGCCTTTGCCGATCC | 145 |
下游:GGGGTACTTCAGGGTGAGGA |
组别 | mRNA | 蛋白 | ||
---|---|---|---|---|
Snail | Slug | Snail | Slug | |
对照组 | 1.02±0.14 | 1.00±0.13 | 0.87±0.11 | 0.85±0.09 |
茶黄素低剂量组 | 0.57±0.05a | 0.63±0.07a | 0.47±0.08a | 0.46±0.07a |
茶黄素高剂量组 | 0.31±0.05ab | 0.29±0.04ab | 0.11±0.02ab | 0.09±0.01ab |
茶黄素高剂量+空载组 | 0.33±0.07 | 0.30±0.06 | 0.13±0.03 | 0.10±0.03 |
茶黄素高剂量+Snail过表达组 | 0.98±0.16c | 0.94±0.18c | 0.82±0.10c | 0.80±0.13c |
F | 63.958** | 57.763** | 132.685** | 129.660** |
Tab.2 Comparison of relative expression levels of Snail and Slug in SCC-25 cells between the five groups
组别 | mRNA | 蛋白 | ||
---|---|---|---|---|
Snail | Slug | Snail | Slug | |
对照组 | 1.02±0.14 | 1.00±0.13 | 0.87±0.11 | 0.85±0.09 |
茶黄素低剂量组 | 0.57±0.05a | 0.63±0.07a | 0.47±0.08a | 0.46±0.07a |
茶黄素高剂量组 | 0.31±0.05ab | 0.29±0.04ab | 0.11±0.02ab | 0.09±0.01ab |
茶黄素高剂量+空载组 | 0.33±0.07 | 0.30±0.06 | 0.13±0.03 | 0.10±0.03 |
茶黄素高剂量+Snail过表达组 | 0.98±0.16c | 0.94±0.18c | 0.82±0.10c | 0.80±0.13c |
F | 63.958** | 57.763** | 132.685** | 129.660** |
组别 | 存活率 | 凋亡率 |
---|---|---|
对照组 | 100.00±14.26 | 2.71±0.64 |
茶黄素低剂量组 | 61.75±6.20a | 39.26±5.17a |
茶黄素高剂量组 | 34.02±5.32ab | 64.98±7.28ab |
茶黄素高剂量+空载组 | 31.46±4.93 | 65.17±8.13 |
茶黄素高剂量+Snail过表达组 | 93.13±15.41c | 5.05±1.28c |
F | 57.918** | 191.004** |
Tab.3 Comparison of survival rate and apoptosis rate of SCC-25 cells between the five groups
组别 | 存活率 | 凋亡率 |
---|---|---|
对照组 | 100.00±14.26 | 2.71±0.64 |
茶黄素低剂量组 | 61.75±6.20a | 39.26±5.17a |
茶黄素高剂量组 | 34.02±5.32ab | 64.98±7.28ab |
茶黄素高剂量+空载组 | 31.46±4.93 | 65.17±8.13 |
茶黄素高剂量+Snail过表达组 | 93.13±15.41c | 5.05±1.28c |
F | 57.918** | 191.004** |
组别 | 迁移率/% | 侵袭数/(个/视野) |
---|---|---|
对照组 | 83.70±12.35 | 342.13±45.63 |
茶黄素低剂量组 | 52.53±6.37a | 219.25±24.18a |
茶黄素高剂量组 | 24.64±3.96ab | 94.82±9.27ab |
茶黄素高剂量+空载组 | 26.01±4.49 | 105.12±11.34 |
茶黄素高剂量+Snail过表达组 | 72.98±13.40c | 320.56±50.26c |
F | 52.681** | 74.663** |
Tab.4 Comparison of migration rate and invasion number of SCC-25 cells between the five groups
组别 | 迁移率/% | 侵袭数/(个/视野) |
---|---|---|
对照组 | 83.70±12.35 | 342.13±45.63 |
茶黄素低剂量组 | 52.53±6.37a | 219.25±24.18a |
茶黄素高剂量组 | 24.64±3.96ab | 94.82±9.27ab |
茶黄素高剂量+空载组 | 26.01±4.49 | 105.12±11.34 |
茶黄素高剂量+Snail过表达组 | 72.98±13.40c | 320.56±50.26c |
F | 52.681** | 74.663** |
组别 | Bax | Bcl-2 | ZO-1 | E-cadherin | N-cadherin |
---|---|---|---|---|---|
对照组 | 0.08±0.01 | 0.89±0.13 | 0.09±0.02 | 0.15±0.03 | 1.19±0.22 |
茶黄素低剂量组 | 0.46±0.08a | 0.51±0.09a | 0.50±0.11a | 0.58±0.12a | 0.72±0.08a |
茶黄素高剂量组 | 0.83±0.13ab | 0.14±0.04ab | 0.95±0.14ab | 1.06±0.20ab | 0.21±0.05ab |
茶黄素高剂量+空载组 | 0.81±0.15 | 0.13±0.03 | 0.96±0.13 | 1.03±0.23 | 0.22±0.06 |
茶黄素高剂量+Snail过表达组 | 0.11±0.03c | 0.84±0.17c | 0.12±0.01c | 0.18±0.04c | 1.14±0.18c |
F | 84.340** | 71.048** | 110.548** | 52.992** | 72.711** |
Tab.5 Comparison of relative expression levels of SCC-25 cell apoptosis and epithelial mesenchymal transformation related proteins between the five groups
组别 | Bax | Bcl-2 | ZO-1 | E-cadherin | N-cadherin |
---|---|---|---|---|---|
对照组 | 0.08±0.01 | 0.89±0.13 | 0.09±0.02 | 0.15±0.03 | 1.19±0.22 |
茶黄素低剂量组 | 0.46±0.08a | 0.51±0.09a | 0.50±0.11a | 0.58±0.12a | 0.72±0.08a |
茶黄素高剂量组 | 0.83±0.13ab | 0.14±0.04ab | 0.95±0.14ab | 1.06±0.20ab | 0.21±0.05ab |
茶黄素高剂量+空载组 | 0.81±0.15 | 0.13±0.03 | 0.96±0.13 | 1.03±0.23 | 0.22±0.06 |
茶黄素高剂量+Snail过表达组 | 0.11±0.03c | 0.84±0.17c | 0.12±0.01c | 0.18±0.04c | 1.14±0.18c |
F | 84.340** | 71.048** | 110.548** | 52.992** | 72.711** |
组别 | 肿瘤质量/g | 肿瘤体积/mm3 |
---|---|---|
对照组 | 0.85±0.11 | 940.32±53.76 |
茶黄素低剂量组 | 0.52±0.07a | 620.43±48.07a |
茶黄素高剂量组 | 0.20±0.05ab | 314.85±28.15ab |
茶黄素高剂量+空载组 | 0.22±0.04 | 320.94±30.36 |
茶黄素高剂量+Snail过表达组 | 0.78±0.10c | 908.89±45.12c |
F | 148.199** | 514.771** |
Tab.6 Comparison of tumor mass and tumor volume of SCC-25 transplanted tumor in nude mice between the five groups
组别 | 肿瘤质量/g | 肿瘤体积/mm3 |
---|---|---|
对照组 | 0.85±0.11 | 940.32±53.76 |
茶黄素低剂量组 | 0.52±0.07a | 620.43±48.07a |
茶黄素高剂量组 | 0.20±0.05ab | 314.85±28.15ab |
茶黄素高剂量+空载组 | 0.22±0.04 | 320.94±30.36 |
茶黄素高剂量+Snail过表达组 | 0.78±0.10c | 908.89±45.12c |
F | 148.199** | 514.771** |
[1] | NIU Q, SUN Q, BAI R, et al. Progress of nanomaterials-based photothermal therapy for oral squamous cell carcinoma[J]. Int J Mol Sci, 2022, 23(18):10428. doi:10.3390/ijms231810428. |
[2] | FERREIRA E COSTA R, LEÃO M, SANT'ANA M, et al. Oral squamous cell carcinoma frequency in young patients from referral centers around the world[J]. Head Neck Pathol, 2022, 16(3):755-762. doi:10.1007/s12105-022-01441-w. |
[3] | O'NEILL E J, TERMINI D, ALBANO A, et al. Anti-cancer properties of theaflavins[J]. Molecules, 2021, 26(4):987-1011. doi:10.3390/molecules26040987. |
[4] | XU J, WANG S J, BU S S, et al. Theaflavin promoted apoptosis in nasopharyngeal carcinoma unexpectedly via inducing autophagy in vitro[J]. Iran J Basic Med Sci, 2022, 25(1):68-74. doi:10.22038/IJBMS.2021.59190.13143. |
[5] | GHOSH A, LAHIRI A, MUKHERJEE S, et al. Prevention of inorganic arsenic induced squamous cell carcinoma of the skin in Swiss albino mice by black tea through epigenetic modulation[J]. Heliyon, 2022, 8(8):e10341. doi:10.1016/j.heliyon.2022.e10341. |
[6] | WANG H, LI Q F, CHOW H Y, et al. Arginine deprivation inhibits pancreatic cancer cell migration,invasion and EMT via the down regulation of Snail,Slug,Twist,and MMP1/9[J]. J Physiol Biochem, 2020, 76(1):73-83. doi:10.1007/s13105-019-00716-1. |
[7] | CHEN D D, CHENG J T, CHANDOO A, et al. microRNA-33a prevents epithelial-mesenchymal transition,invasion,and metastasis of gastric cancer cells through the Snail/Slug pathway[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 317(2):G147-G160. doi:10.1152/ajpgi.00284.2018. |
[8] | CHO Y A, KIM E K, CHO B C, et al. Twist and Snail/Slug expression in oropharyngeal squamous cell carcinoma in correlation with lymph node metastasis[J]. Anticancer Res, 2019, 39(11):6307-6316. doi:10.21873/anticanres.13841. |
[9] | DANTAS R, GUIMARÃES V, DE SOUZA R O, et al. Immunodetection of epithelial-mesenchymal transition and tumor proliferation markers in GLi-1-positive oral squamous cell carcinoma[J]. Appl Immunohistochem Mol Morphol, 2021, 29(5):335-344. doi:10.1097/PAI.0000000000000866. |
[10] | BHATTACHARYA R, CHATTERJEE R, MANDAL A, et al. Theaflavin-containing black tea extract:A potential DNA methyltransferase inhibitor in human colon cancer cells and ehrlich ascites carcinoma-induced solid tumors in mice[J]. Nutr Cancer, 2021, 73(11/12):2447-2459. doi:10.1080/01635581.2020.1828943. |
[11] | 邓力, 蔡婷, 王静雷, 等. 黄芪多糖通过JAK/STAT3通路抑制口腔鳞癌SCC-25裸鼠移植瘤[J]. 中国临床解剖学杂志, 2019, 37(2):169-173. |
DENG L, CAI T, WANG J L, et al. Astragalus polysaccharide inhibits oral squamous cell carcinoma cell line SCC-25 xenograft tumor by suppressing JAK/STAT3 signaling pathway[J]. Chinese Journal of Clinical Anatomy, 2019, 37(2):169-173. doi:10.13418/j.issn.1001-165x.2019.02.011. | |
[12] | BRENNAN P A, DYLGJERI F, COLETTA R D, et al. Surgical tumour margins and their significance in oral squamous cell carcinoma[J]. J Oral Pathol Med, 2022, 51(4):311-314. doi:10.1111/jop.13276. |
[13] | LI H, ZHANG Y, XU M, et al. Current trends of targeted therapy for oral squamous cell carcinoma[J]. J Cancer Res Clin Oncol, 2022, 148(9):2169-2186. doi:10.1007/s00432-022-04028-8. |
[14] | JANIAK-KISZKA J, NOWACZEWSKA M, KAŹMIERCZAK W. Oral squamous cell carcinoma - clinical characteristics, treatment, and outcomes in a single institution retrospective cohort study[J]. Otolaryngol Pol, 2022, 76(3):12-17. doi:10.5604/01.3001.0015.7567. |
[15] | MAITY R, CHATTERJEE M, BANERJEE A, et al. Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells[J]. Mater Sci Eng C Mater Biol Appl, 2019, 104:109909. doi:10.1016/j.msec.2019.109909. |
[16] | JUNEJA T, PANDYA M D, SHAH S. Molecular Landscape and computational screening of the natural inhibitors against HPV16 E6 oncoprotein[J]. Asian Pac J Cancer Prev, 2021, 22(8):2461-2469. doi:10.31557/APJCP.2021.22.8.2461. |
[17] | SHI S, MA B, SUN F, et al. Theaflavin binds to a druggable pocket of TMEM16A channel and inhibits lung adenocarcinoma cell viability[J]. J Biol Chem, 2021, 297(3):101016. doi:10.1016/j.jbc.2021.101016. |
[18] | BUYUK B, JIN S, YE K. Epithelial-to-mesenchymal transition signaling pathways responsible for breast cancer metastasis[J]. Cell Mol Bioeng, 2022, 15(1):1-13. doi:10.1007/s12195-021-00694-9. |
[19] | PENG J, WU H J, ZHANG H F, et al. miR-143-3p inhibits proliferation and invasion of hepatocellular carcinoma cells by regulating its target gene FGF1[J]. Clin Transl Oncol, 2021, 23(3):468-480. doi:10.1007/s12094-020-02440-5. |
[20] | NOGUCHI S, HIRANO K, TANIMOTO N, et al. SLUG is upregulated and induces epithelial mesenchymal transition in canine oral squamous cell carcinoma[J]. Vet Comp Oncol, 2022, 20(1):134-141. doi:10.1111/vco.12755. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||