Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (12): 1314-1320.doi: 10.11958/20230521
• Experimental Research • Previous Articles Next Articles
BAI Yu1(), LAN Xuejiao1, TANG Jing1, WEN Yu1, LYU Mingmin1, SONG Qinggao2,△(
)
Received:
2023-04-17
Revised:
2023-05-19
Published:
2023-12-15
Online:
2023-12-22
Contact:
△ E-mail:BAI Yu, LAN Xuejiao, TANG Jing, WEN Yu, LYU Mingmin, SONG Qinggao. Effects of Sp5 silencing on Wnt signaling pathway related factors and proliferative ability in mEPMCs[J]. Tianjin Medical Journal, 2023, 51(12): 1314-1320.
CLC Number:
序列名称 | 碱基序列 | 病毒滴度/ (TU/mL) |
---|---|---|
shRNA4 | CCCGTCGGACTTTGCACAGTA | 1.5×108 |
shRNA5 | AGTGCGGCAAACGCTTCATGC | 1×108 |
shRNA6 | TGGGTTCACCCTCCAGACTTT | 1×108 |
空载病毒对照 | TTCTCCGAACGTGTCACGTAA | 2×108 |
Tab.1 Sp5 gene shRNA interfered with target sequences and viral titers
序列名称 | 碱基序列 | 病毒滴度/ (TU/mL) |
---|---|---|
shRNA4 | CCCGTCGGACTTTGCACAGTA | 1.5×108 |
shRNA5 | AGTGCGGCAAACGCTTCATGC | 1×108 |
shRNA6 | TGGGTTCACCCTCCAGACTTT | 1×108 |
空载病毒对照 | TTCTCCGAACGTGTCACGTAA | 2×108 |
组别 | MOI值=10 (病毒原液+ 完全培养基) | MOI值=30 (病毒原液+ 完全培养基) | MOI值=50 (病毒原液+ 完全培养基) |
---|---|---|---|
空载病毒组 | 0.40+49.55 | 1.20+48.75 | 2.00+47.95 |
shRNA4组 | 0.33+49.62 | 1.60+48.35 | 2.60+47.35 |
shRNA5组 | 0.80+49.15 | 2.40+47.55 | 4.00+45.95 |
shRNA6组 | 0.80+49.15 | 2.40+47.55 | 4.00+45.95 |
Tab.2 Preparation of virus mixture in each group (μL)
组别 | MOI值=10 (病毒原液+ 完全培养基) | MOI值=30 (病毒原液+ 完全培养基) | MOI值=50 (病毒原液+ 完全培养基) |
---|---|---|---|
空载病毒组 | 0.40+49.55 | 1.20+48.75 | 2.00+47.95 |
shRNA4组 | 0.33+49.62 | 1.60+48.35 | 2.60+47.35 |
shRNA5组 | 0.80+49.15 | 2.40+47.55 | 4.00+45.95 |
shRNA6组 | 0.80+49.15 | 2.40+47.55 | 4.00+45.95 |
基因名称 | 引物序列(5′→3′) | 产物大小/bp |
---|---|---|
β-catenin | 上游:AGCTGGCCTGGTTTGATACT | 125 |
下游:CCATTCCCACCCTACCAAGT | ||
GSK-3β | 上游:ACCAGGAGCAGGACATTTCAC | 197 |
下游:CAGGTGTGTCTCGCCCATT | ||
Wnt3a | 上游:CCTGGTCTACTACGAGGCCT | 201 |
下游:ACGTAGCAGCACCAATGGAA | ||
CyclinD1 | 上游:TGCGTGCAGAAGGAGATTGT | 241 |
下游:AGATGCACAACTTCTCGGCA | ||
GAPDH | 上游:TCACCATCTTCCAGGAGCGAGAC | 303 |
下游:TGAGCCCTTCCACAATGCCAAAG |
Tab.3 PCR primer sequence
基因名称 | 引物序列(5′→3′) | 产物大小/bp |
---|---|---|
β-catenin | 上游:AGCTGGCCTGGTTTGATACT | 125 |
下游:CCATTCCCACCCTACCAAGT | ||
GSK-3β | 上游:ACCAGGAGCAGGACATTTCAC | 197 |
下游:CAGGTGTGTCTCGCCCATT | ||
Wnt3a | 上游:CCTGGTCTACTACGAGGCCT | 201 |
下游:ACGTAGCAGCACCAATGGAA | ||
CyclinD1 | 上游:TGCGTGCAGAAGGAGATTGT | 241 |
下游:AGATGCACAACTTCTCGGCA | ||
GAPDH | 上游:TCACCATCTTCCAGGAGCGAGAC | 303 |
下游:TGAGCCCTTCCACAATGCCAAAG |
组别 | β-catenin | GSK-3β | Wnt3a | CyclinD1 |
---|---|---|---|---|
空白对照组 | 0.55±0.06 | 2.26±0.08 | 0.24±0.03 | 0.76±0.22 |
空载病毒组 | 0.62±0.02 | 2.67±0.120 | 0.28±0.04 | 0.81±0.33 |
Sp5-shRNA组 | 1.12±0.22ab | 4.19±0.74ab | 0.34±0.03ab | 1.73±0.04ab |
F | 16.640* | 16.180* | 14.500* | 16.760* |
Tab.4 Comparison of β-catenin, GSK-3β, Wnt3a and CyclinD1 protein between three groups of cells (n=3,$\bar{x}±s$)
组别 | β-catenin | GSK-3β | Wnt3a | CyclinD1 |
---|---|---|---|---|
空白对照组 | 0.55±0.06 | 2.26±0.08 | 0.24±0.03 | 0.76±0.22 |
空载病毒组 | 0.62±0.02 | 2.67±0.120 | 0.28±0.04 | 0.81±0.33 |
Sp5-shRNA组 | 1.12±0.22ab | 4.19±0.74ab | 0.34±0.03ab | 1.73±0.04ab |
F | 16.640* | 16.180* | 14.500* | 16.760* |
组别 | β-catenin | GSK-3β | Wnt3a | CyclinD1 |
---|---|---|---|---|
空白对照组 | 0.83±0.09 | 0.96±0.22 | 0.90±0.36 | 0.70±0.24 |
空载病毒组 | 1.02±0.02 | 0.96±0.09 | 1.03±0.08 | 1.01±0.01 |
Sp5-shRNA组 | 1.26±0.10ab | 1.96±0.39ab | 1.92±0.30ab | 1.61±0.33ab |
F | 24.550* | 14.310* | 12.370* | 11.940* |
Tab.5 Expression of β-catenin, GSK-3β, Wnt3a and CyclinD1 mRNA in each group of cells (n=3,$\bar{x}±s$)
组别 | β-catenin | GSK-3β | Wnt3a | CyclinD1 |
---|---|---|---|---|
空白对照组 | 0.83±0.09 | 0.96±0.22 | 0.90±0.36 | 0.70±0.24 |
空载病毒组 | 1.02±0.02 | 0.96±0.09 | 1.03±0.08 | 1.01±0.01 |
Sp5-shRNA组 | 1.26±0.10ab | 1.96±0.39ab | 1.92±0.30ab | 1.61±0.33ab |
F | 24.550* | 14.310* | 12.370* | 11.940* |
组别 | OD450 | ||
---|---|---|---|
24 h | 48 h | 72 h | |
空白对照组 | 0.31±0.05 | 0.64±0.06 | 1.24±0.19 |
空载病毒组 | 0.33±0.06 | 0.67±0.05 | 1.21±0.21 |
Sp5-shRNA组 | 0.39±0.03 | 0.84±0.01ab | 1.81±0.11ab |
F | 2.419 | 16.500* | 8.457* |
Tab.6 Comparison of cell proliferation ability between three groups (n=3,$\bar{x}±s$)
组别 | OD450 | ||
---|---|---|---|
24 h | 48 h | 72 h | |
空白对照组 | 0.31±0.05 | 0.64±0.06 | 1.24±0.19 |
空载病毒组 | 0.33±0.06 | 0.67±0.05 | 1.21±0.21 |
Sp5-shRNA组 | 0.39±0.03 | 0.84±0.01ab | 1.81±0.11ab |
F | 2.419 | 16.500* | 8.457* |
组别 | G0/G1期 | S期 | G2/M期 |
---|---|---|---|
空白对照组 | 87.15±0.72 | 7.65±0.16 | 5.20±0.82 |
空载病毒组 | 87.75±0.33 | 7.40±0.07 | 4.85±0.26 |
Sp5-shRNA组 | 84.66±0.16ab | 10.48±0.20ab | 4.85±0.28 |
F | 37.200* | 371.900* | 0.430 |
Tab.7 Cell cycle distribution of each group of cells (n=3,%,$\bar{x}±s$)
组别 | G0/G1期 | S期 | G2/M期 |
---|---|---|---|
空白对照组 | 87.15±0.72 | 7.65±0.16 | 5.20±0.82 |
空载病毒组 | 87.75±0.33 | 7.40±0.07 | 4.85±0.26 |
Sp5-shRNA组 | 84.66±0.16ab | 10.48±0.20ab | 4.85±0.28 |
F | 37.200* | 371.900* | 0.430 |
[1] | NASREDDINE G, EL HAJJ J, GHASSIBE-SABBAGH M. Orofacial clefts embryology,classification,epidemiology,and genetics[J]. Mutat Res Rev Mutat Res, 2021, 787:108373. doi:10.1016/j.mrrev.2021.108373. |
[2] | MARAZITA M L. Gene × environment associations in orofacial clefting[J]. Curr Top Dev Biol, 2023, 152:169-192. doi:10.1016/bs.ctdb.2022.10.006. |
[3] | ZAWIŚLAK A, WOŹNIAK K, KAWALA B, et al. IRF6 and FGF1 polymorphisms in non-syndromic cleft lip with or without cleft palate in the Polish population[J]. Open Med(Wars), 2023, 18(1):20230677. doi:10.1515/med-2023-0677. |
[4] | AVASTHI K K, AGARWAL A, AGARWAL S. Association of MTHFR,BMP4,TGFA and IRF6 polymorphisms with non-syndromic cleft lip and palate in North Indian patients[J]. Avicenna J Med Biotechnol, 2022, 14(2):175-180. doi:10.18502/ajmb.v14i2.8879. |
[5] | YE S D, ZHANG D M, CHENG F, et al. Wnt/β-catenin and LIF-Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal[J]. J Cell Sci, 2016, 129(2):269-276. doi:10.1242/jcs.177675. |
[6] | PARK D S, SEO J H, HONG M N, et al. Role of Sp5 as an essential early regulator of neural crest specification in xenopus[J]. Dev Dyn, 2013, 242(12):1382-1394. doi:10.1002/dvdy.24034. |
[7] | 李泓运. 锌对腭突融合期细胞凋亡的影响及与腭裂Sp家族候选基因研究[D]. 遵义: 遵义医学院, 2018. |
LI H Y. The influence of Zinc on apoptosis of palatal process fusion and the study of Sp family candidate gene based on cleft palate[D]. Zunyi: Zunyi Medical College, 2018. | |
[8] | 李欣蔚. 不同锌离子浓度对腭胚突融合期细胞增殖影响及Sp家族表达分析[D]. 遵义: 遵义医学院, 2018. |
LI X W. Effect of different concentration of zinc on palatal cell proliferation during palatine process fusion and expression analysis of Sp family[D]. Zunyi: Zunyi Medical College, 2018. | |
[9] | 王世奎. 锌缺乏对胎鼠腭胚突发育不同时期Sp5表达变化研究[D]. 遵义: 遵义医科大学, 2021. |
WANG S K. The changes in expression of Sp5 in different developmental stages of fetal rat palatine process by zinc deficiency[D]. Zunyi: Zunyi Medical University, 2021. doi:10.27680/d.cnki.gzyyc.2021.000181. | |
[10] | CHEN S Y, JIA Z L, CAI M, et al. SP1-mediated upregulation of long noncoding RNA ZFAS1 involved in non-syndromic cleft lip and palate via inactivating WNT/β-catenin signaling pathway[J]. Front Cell Dev Biol, 2021, 9:662780. doi:10.3389/fcell.2021.662780. |
[11] | MAILI L, LETRA A, SILVA R, et al. PBX-WNT-P63-IRF6 pathway in nonsyndromic cleft lip and palate[J]. Birth Defects Res, 2020, 112(3):234-244. doi:10.1002/bdr2.1630. |
[12] | 兰雪娇. 小鼠腭胚突间充质细胞Sp5基因过表达对GSK-3β等Wnt通路因子表达的影响[D]. 遵义: 遵义医科大学, 2021. |
LAN X J. Effect of Sp5 gene overexpression in mouse palatal embryonic mesenchymal cells on the expression of Wnt pathway factors[D]. Zunyi: Zunyi Medical University, 2021. doi:10.27680/d.cnki.gzyyc.2021.000138. | |
[13] | JO T, CHOI K, CHOI J, et al. The concordance of alveolar bone deficiency with severity of lip deformity in microform cleft lip[J]. J Clin Med, 2022, 12(1):39. doi:10.3390/jcm12010039. |
[14] | STEPP W H, STEIN E J, CANFAROTTA M W, et al. Body dysmorphic disorder in adult patients with an orofacial cleft:an unseen psychological burden[J]. Laryngoscope, 2023, 133(4):818-821. doi:10.1002/lary.30378. |
[15] | MASSENBURG B B, HOPPER R A, CROWE C S, et al. Global burden of orofacial clefts and the world surgical workforce[J]. Plast Reconstr Surg, 2021, 148(4):568e-580 e. doi:10.1097/PRS.0000000000008334. |
[16] | ALOIS C I, RUOTOLO R A. An overview of cleft lip and palate[J]. JAAPA, 2020, 33(12):17-20. doi:10.1097/01.JAA.0000721644. |
[17] | ROMMEREIM L, AKHADE A S, GERMAIN R N, et al. Lentivirus-mediated conditional gene expression[J]. Bio-protocol, 2021, 11(21):e4205. doi:10.21769/BioProtoc.4205. |
[18] | RAKHRA G, RAKHRA G. Zinc finger proteins:insights into the transcriptional and post transcriptional regulation of immune response[J]. Mol Biol Rep, 2021, 48(7):5735-5743. doi:10.1007/s11033-021-06556-x. |
[19] | CHEN Y X, GUO Y Q, GE X J, et al. Elevated expression and potential roles of human Sp5,a member of Sp transcription factor family,in human cancers[J]. Biochem Biophys Res Commun, 2006, 340(3):758-766. doi:10.1016/j.bbrc.2005.12.068. |
[20] | KENNEDY M W, CHALAMALASETTY R B, THOMAS S, et al. Sp5 and Sp8 recruit β-catenin and Tcf1-Lef1 to select enhancers to activate Wnt target gene transcription[J]. Proc Natl Acad Sci USA, 2016, 113(13):3545-3550. doi:10.1073/pnas.1519994113. |
[21] | JI Y, GARLAND M A, SUN B, et al. Cellular and developmental basis of orofacial clefts[J]. Birth Defects Res, 2020, 112(19):1558-1587. doi:10.1002/bdr2.1768. |
[22] | LI G, YANG T Q, CHEN Y L, et al. USP5 sustains the proliferation of glioblastoma through stabilization of CyclinD1[J]. Front Pharmacol, 2021, 12:720307. doi:10.3389/fphar.2021.720307. |
[23] | LIU H G, LI Z, HUO S S, et al. Induction of G0/G1 phase arrest and apoptosis by CRISPR/Cas9-mediated knockout of CDK2 in A375 melanocytes[J]. Mol Clin Oncol, 2020, 12(1):9-14. doi:10.3892/mco.2019.1952. |
[24] | 陈珏蓉, 陈菁菁, 刘觅, 等. 地塞米松和维生素B12干预下小鼠胚胎腭突Shh相关信号因子的研究[J]. 重庆医科大学学报, 2021, 46(12):1454-1459. |
CHENG J Y, CHENG J J, LIU M, et al. Study on Shh-related signaling factors of fetal palatal process in mice under the intervention of dexamethasone and vitamin B12[J]. Journal of Chongqing Medical University, 2021, 46(12):1454-1459. doi:10.13406/j.cnki.cyxb.002722. |
[1] | ZHANG Jinwei, WANG Yan, WANG Tong. Effects of miR-107 on proliferation, invasion and migration of CAL27 cells in oral squamous cell carcinoma [J]. Tianjin Medical Journal, 2024, 52(9): 897-899. |
[2] | LIU Danyang, LI Yongtao, ZHANG Haiyan, LI Lin, LIU Yang, SHEN Lei. Effect of breast cancer cell conditioned medium on biological behavior of bone marrow mesenchymal stem cells [J]. Tianjin Medical Journal, 2024, 52(5): 454-458. |
[3] | ZHONG Jiashuai, FENG Yumei. Comparative study on the directed differentiation ability of mouse bone marrow and adipose-derived mesenchymal stem cells [J]. Tianjin Medical Journal, 2024, 52(2): 129-135. |
[4] | LIN Yao, LIU Congna, WANG Shixia, ZHANG Zhiyong. Effect of acacetin on lipopolysaccharide induced apoptosis of dental pulp cells by regulating the HMGB1/TLR4 signaling pathway [J]. Tianjin Medical Journal, 2024, 52(12): 1238-1243. |
[5] | ZHANG Guiting, HE Chao. Mechanism of oxLDL/β2GPⅠ/aβ2GPⅠ complex promoting the angiogenesis in vascular endothelial cells through TLR4//MyD88/NF-κB signaling pathway [J]. Tianjin Medical Journal, 2024, 52(11): 1131-1136. |
[6] | HAO Kaikai, WANG Xiaomin, LIU Zheng, LIU Dongyang, LI Jing. Effects of ligustilide regulating RhoA/ROCK signaling pathway on biological behavior of esophageal cancer cells [J]. Tianjin Medical Journal, 2024, 52(11): 1164-1170. |
[7] | SUN Chuangxin, LI Gang. Role of NID1 in angiogenesis of clear cell renal cell carcinoma [J]. Tianjin Medical Journal, 2024, 52(10): 1009-1013. |
[8] | XU Guiying, LI Yu, LI Xue, LIU Yimeng, CHEN Huaiyong. Study of Lkb1 regulates epithelial regeneration in asthma using airway organoid [J]. Tianjin Medical Journal, 2024, 52(1): 11-15. |
[9] | ZHANG Linlin, ZHAO Tangming, HUANG Chan, LI Shanwen, GAN Weihua. Effects and mechanism of AMPP2 on mesangial cell proliferation induced by TGF-β1 [J]. Tianjin Medical Journal, 2024, 52(1): 50-55. |
[10] | WANG Qianqian, LI Tingfang, WANG Feng. Study on the mechanism of CHD4 regulating telomere function to promote cervical cancer HeLa cell proliferation [J]. Tianjin Medical Journal, 2023, 51(9): 909-914. |
[11] | HUANG Guanyou, GE Xuecheng, GAN Hongchuan, HAO Shuyu, WU Zhen. Expression of CCL18 in glioblastoma and its effect on proliferation and migration of human U87MG cells [J]. Tianjin Medical Journal, 2023, 51(9): 915-921. |
[12] | YUE Jinjing, ZENG Ying, GUO Xiaopei, DONG Yue, JI Ruonan, PENG Rui, LUO Xiaohua. MiR-155 affects the biological functions of trophoblastic cells through regulating cGMP-dependent kinase 1 and is involved in the mechanism of preeclampsia [J]. Tianjin Medical Journal, 2023, 51(9): 928-934. |
[13] | ZHANG Liqun, WURI Jimusi, ZHENG Xiaoming, WANG Lin, HAN Yuxiu, ZHANG Wei, YAN Tao. The mechanisms of circFAT1 on the biological process of GBM cells [J]. Tianjin Medical Journal, 2023, 51(8): 797-802. |
[14] | LONG Ying, HUANG Fangyi, WEI Yousheng. Impacts of NGF/TrkA axis on proliferation, apoptosis and invasion of cervical cancer SiHa cells [J]. Tianjin Medical Journal, 2023, 51(8): 809-813. |
[15] | WU Haibo, LIANG Yan, SHEN Lei, FAN Zhan, FU Guohui. Effects of Fufang Tengli Decoction drug-containing serum on proliferation, apoptosis and epithelial-mesenchymal transition of human glioma U251 cells [J]. Tianjin Medical Journal, 2023, 51(8): 841-846. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||