Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (8): 797-802.doi: 10.11958/20230224
• Cell and Molecular Biology • Previous Articles Next Articles
ZHANG Liqun1(), WURI Jimusi1, ZHENG Xiaoming2, WANG Lin1, HAN Yuxiu1, ZHANG Wei1, YAN Tao1,△(
)
Received:
2023-02-22
Revised:
2023-05-16
Published:
2023-08-15
Online:
2023-08-10
Contact:
△E-mail: ZHANG Liqun, WURI Jimusi, ZHENG Xiaoming, WANG Lin, HAN Yuxiu, ZHANG Wei, YAN Tao. The mechanisms of circFAT1 on the biological process of GBM cells[J]. Tianjin Medical Journal, 2023, 51(8): 797-802.
CLC Number:
基因名称 | 引物序列(5′→3′) | 产物大小(bp) |
---|---|---|
circFAT1 | 上游:GATGAGGACGCCAGAAGAGA 下游:CAAATGTCTCCCCATTGCTT | 121 |
linerFAT1 | 上游:GGGCCAAAGACAAGGGAAAG 下游:TGAAAACACCAACGCCAGAG | 243 |
β-actin | 上游:CCTCTATGCCAACACAGTGC 下游:CCTGCTTGCTGATCCACATC | |
206 |
Tab.1 Primer sequence for qRT-PCR
基因名称 | 引物序列(5′→3′) | 产物大小(bp) |
---|---|---|
circFAT1 | 上游:GATGAGGACGCCAGAAGAGA 下游:CAAATGTCTCCCCATTGCTT | 121 |
linerFAT1 | 上游:GGGCCAAAGACAAGGGAAAG 下游:TGAAAACACCAACGCCAGAG | 243 |
β-actin | 上游:CCTCTATGCCAACACAGTGC 下游:CCTGCTTGCTGATCCACATC | |
206 |
组别 | 细胞集落数/(个/视野) | 侵袭率/% | |||
---|---|---|---|---|---|
sh-对照组 | 499±46 | 1.01±0.02 | |||
sh-circFAT1组 | 182±65 | 0.33±0.06 | |||
t | 6.894** | 19.513** | |||
组别 | E-cadherin | N-cadherin | Vimentin | ||
sh-对照组 | 0.59±0.11 | 1.47±0.13 | 1.53±0.09 | ||
sh-circFAT1组 | 1.04±0.03 | 0.35±0.07 | 0.27±0.08 | ||
t | 9.233** | 6.884** | 10.582** |
Tab.2 Comparison of the colony number, invasion rate and protein level of U87 cells between two groups
组别 | 细胞集落数/(个/视野) | 侵袭率/% | |||
---|---|---|---|---|---|
sh-对照组 | 499±46 | 1.01±0.02 | |||
sh-circFAT1组 | 182±65 | 0.33±0.06 | |||
t | 6.894** | 19.513** | |||
组别 | E-cadherin | N-cadherin | Vimentin | ||
sh-对照组 | 0.59±0.11 | 1.47±0.13 | 1.53±0.09 | ||
sh-circFAT1组 | 1.04±0.03 | 0.35±0.07 | 0.27±0.08 | ||
t | 9.233** | 6.884** | 10.582** |
组别 | TGFB2 | p-SMAD2 | p-SMAD3 |
---|---|---|---|
A组 | 0.98±0.04 | 0.69±0.05 | 0.92±0.04 |
B组 | 0.75±0.05a | 0.36±0.01a | 0.56±0.05a |
C组 | 1.24±0.05a | 1.16±0.03a | 1.13±0.09a |
D组 | 0.92±0.02bc | 0.81±0.05bc | 0.94±0.04bc |
F | 76.842** | 147.204** | 43.651** |
Tab.3 Comparison of TGFB2, p-SMAD2 and p-SMAD3 protein expression levels between four groups
组别 | TGFB2 | p-SMAD2 | p-SMAD3 |
---|---|---|---|
A组 | 0.98±0.04 | 0.69±0.05 | 0.92±0.04 |
B组 | 0.75±0.05a | 0.36±0.01a | 0.56±0.05a |
C组 | 1.24±0.05a | 1.16±0.03a | 1.13±0.09a |
D组 | 0.92±0.02bc | 0.81±0.05bc | 0.94±0.04bc |
F | 76.842** | 147.204** | 43.651** |
[1] | HUBERFELD G, VECHT C J. Seizures and gliomas-towards a single therapeutic approach[J]. Nat Rev Neurol, 2016, 12(4):204-216. doi:10.1038/nrneurol.2016.26. |
[2] | HATCHER A, YU K, MEYER J, et al. Pathogenesis of peritumoral hyperexcitability in an immunocompetent CRISPR-based glioblastoma model[J]. J Clin Invest, 2020, 130(5):2286-2300. doi:10.1172/jci133316. |
[3] | FURNARI F B, FENTON T, BACHOO R M, et al. Malignant astrocytic glioma:genetics,biology,and paths to treatment[J]. Genes Dev, 2007, 21(21):2683-2710. doi:10.1101/gad.1596707. |
[4] | SPIZZO R, ALMEIDA M I, COLOMBATTI A, et al. Long non-coding RNAs and cancer:a new frontier of translational research?[J]. Oncogene, 2012, 31(43):4577-4587. doi:10.1038/onc.2011.621. |
[5] | CHEN L, SHAN G. CircRNA in cancer:fundamental mechanism and clinical potential[J]. Cancer Lett, 2021, 505:49-57. doi:10.1016/j.canlet.2021.02.004. |
[6] | ZHANG G, FENG W, WU J. Down-regulation of SEPT9 inhibits glioma progression through suppressing TGF-β-induced epithelial-mesenchymal transition (EMT)[J]. Biomed Pharmacother, 2020, 125:109768. doi:10.1016/j.biopha.2019.109768. |
[7] | ZHANG L, WANG H, XU M, et al. Long noncoding RNA HAS2-AS1 promotes tumor progression in glioblastoma via functioning as a competing endogenous RNA[J]. J Cell Biochem, 2020, 121(1):661-671. doi:10.1002/jcb.29313. |
[8] | FANG J, HONG H, XUE X, et al. A novel circular RNA,circFAT1(e2),inhibits gastric cancer progression by targeting miR-548g in the cytoplasm and interacting with YBX1 in the nucleus[J]. Cancer Lett, 2019, 442:222-232. doi:10.1016/j.canlet.2018.10.040. |
[9] | YANG Y, GAO X, ZHANG M, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis[J]. J Natl Cancer Inst, 2018, 110(3):304-315. doi:10.1093/jnci/djx166. |
[10] | LIU J, ZHAO K, HUANG N, et al. Circular RNAs and human glioma[J]. Cancer Biol Med, 2019, 16(1):11-23. doi:10.20892/j.issn.2095-3941.2018.0425. |
[11] | SONG X, ZHANG N, HAN P, et al. Circular RNA profile in gliomas revealed by identification tool UROBORUS[J]. Nucleic Acids Res, 2016, 44(9):e87. doi:10.1093/nar/gkw075. |
[12] | HE Q, ZHAO L, LIU Y, et al. circ-SHKBP1 regulates the angiogenesis of U87 glioma-exposed endothelial cells through miR-544a/FOXP1 and miR-379/FOXP2 pathways[J]. Mol Ther Nucleic Acids, 2018, 10:331-348. doi:10.1016/j.omtn.2017.12.014. |
[13] | ZHU L P, HE Y J, HOU J C, et al. The role of circRNAs in cancers[J]. Biosci Rep, 2017, 37(5):BSR20170750. doi:10.1042/bsr20170750. |
[14] | SHANG Q, YANG Z, JIA R, et al. The novel roles of circRNAs in human cancer[J]. Mol Cancer, 2019, 18(1):6. doi:10.1186/s12943-018-0934-6. |
[15] | MA S, KONG S, WANG F, et al. CircRNAs:biogenesis,functions,and role in drug-resistant Tumours[J]. Mol Cancer, 2020, 19(1):119. doi:10.1186/s12943-020-01231-4. |
[16] | SALZMAN J, CHEN R, OLSEN M, et al. Cell-type specific features of circular RNA expression[J]. PLoS Genet, 2013, 9(9):e1003777. doi:10.1371/journal.pgen.1003777. |
[17] | ASHWAL-FLUSS R, MEYER M, PAMUDURTI N R, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1):55-66. doi:10.1016/j.molcel.2014.08.019. |
[18] | HANAN M, SOREQ H, KADENER S. CircRNAs in the brain[J]. RNA Biol, 2017, 14(8):1028-1034. doi:10.1080/15476286.2016.1255398. |
[19] | YANG Y, LI J M, WANG X, et al. Analyzing the interactions of mRNAs,miRNAs,lncRNAs and circRNAs to predict competing endogenous RNA networks in glioblastoma[J]. J Neurooncol, 2018, 137(3):493-502. doi:10.1007/s11060-018-2757-0. |
[20] | LI F, ZHANG L, LI W, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway[J]. Oncotarget, 2015, 6(8):6001-6013. doi:10.18632/oncotarget.3469. |
[21] | ZHANG H, ZHU L, BAI M, et al. Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR-133/PRDM16 pathway[J]. Int J Cancer, 2019, 144(10):2501-2515. doi:10.1002/ijc.31977. |
[22] | ZHOU C, MOLINIE B, DANESHVAR K, et al. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs[J]. Cell Rep, 2017, 20(9):2262-2276. doi:10.1016/j.celrep.2017.08.027. |
[23] | LEI M, ZHENG G, NING Q, et al. Translation and functional roles of circular RNAs in human cancer[J]. Mol Cancer, 2020, 19(1):30. doi:10.1186/s12943-020-1135-7. |
[24] | HOU X S, HAN C Q, ZHANG W. MiR-1182 inhibited metastasis and proliferation of ovarian cancer by targeting hTERT[J]. Eur Rev Med Pharmacol Sci, 2018, 22(6):1622-1628. doi:10.26355/eurrev_201803_14569. |
[25] | RODÓN L, GONZÀLEZ-JUNCÀ A, INDA M M, et al. Active CREB1 promotes a malignant TGFβ2 autocrine loop in glioblastoma[J]. Cancer Discov, 2014, 4(10):1230-1241. doi:10.1158/2159-8290.CD-14-0275. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||