[1] |
KHRUNYK Y Y, BELIKOV S V, TSURKAN M V, et al. Surface-dependent osteoblasts response to TiO2 nanotubes of different crystallinity[J]. Nanomaterials(Basel), 2020, 10(2):320. doi:10.3390/nano10020320.
|
[2] |
OCAMPO R A, ECHEVERRIA F E. Antibacterial and biological behavior of TiO2 nanotubes produced by anodizing technique[J]. Crit Rev Biomed Eng, 2021, 49(1):51-65. doi:10.1615/CritRevBiomedEng.2021037758.
|
[3] |
PARK J, CIMPEAN A, TESLER A B, et al. Anodic TiO2 nanotubes:tailoring osteoinduction via drug delivery[J]. Nanomaterials(Basel), 2021, 11(9):2359. doi:10.3390/nano11092359.
|
[4] |
HASHEMI A, EZATI M, MOHAMMADNEJAD J, et al. Chitosan coating of TiO2 nanotube arrays for improved metformin release and osteoblast differentiation[J]. Int J Nanomedicine, 2020, 15:4471-4481. doi:10.2147/IJN.S248927.
|
[5] |
韩天啸, 句世颖, 何琳, 等. 载锶纳米管化纯钛种植体成骨性能的动物实验[J]. 中华口腔医学杂志, 2022, 57(6):618-624.
|
|
HAN T X, JU S Y, HE L, et al. In vivo osteogenic evaluation of titanium implants with strontium loaded nanotubes[J]. Chinese Journal of Stomatology, 2022, 57(6):618-624. doi:10.3760/cma.j.cn112144-20211019-00469.
|
[6] |
TANG J, LI H, GUO M, et al. Enhanced spreading,migration and osteodifferentiation of HBMSCs on macroporous CS-Ta - A biocompatible macroporous coating for hard tissue repair[J]. Mater Sci Eng C Mater Biol Appl, 2021, 129:112411. doi:10.1016/j.msec.2021.112411.
|
[7] |
LEI P, QIAN H, ZHANG T, et al. Porous tantalum structure integrated on Ti6Al4V base by laser powder bed fusion for enhanced bony-ingrowth implants:in vitro and in vivo validation[J]. Bioact Mater, 2022, 7:3-13. doi:10.1016/j.bioactmat.2021.05.025.
|
[8] |
HUANG G, PAN S T, QIU J X. The clinical application of porous tantalum and its new development for bone tissue engineering[J]. Materials(Basel), 2021, 14(10):2647. doi:10.3390/ma14102647.
|
[9] |
ASADULLAH S, MEI S, WANG D, et al. Sulfonated porous surface of tantalum pentoxide/polyimide composite with micro-submicro structures displaying antibacterial performances and stimulating cell responses[J]. Materials & Design, 2020, 190:108510. doi:10.1016/j.matdes.2020.108510.
|
[10] |
SARRAF M, RAZAK B A, NASIRI-TABRIZI B, et al. Nanomechanical properties,wear resistance and in-vitro characterization of Ta2O5 nanotubes coating on biomedical grade Ti-6Al-4V[J]. J Mech Behav Biomed Mater, 2017, 66:159-171. doi:10.1016/j.jmbbm.2016.11.012.
|
[11] |
PANG Z, PAN Z, MA M, et al. Nanostructured coating of non-crystalline tantalum pentoxide on polyetheretherketone enhances RBMS cells/HGE cells adhesion[J]. Int J Nanomedicine, 2021, 16:725-740. doi:10.2147/IJN.S286643.
|
[12] |
XU G, SHEN X, HU Y, et al. Fabrication of tantalum oxide layers onto titanium substrates for improved corrosion resistance and cytocompatibility[J]. Surf Coat Tech, 2015, 272:58-65. doi:10.1016/j.surfcoat.2015.04.024.
|
[13] |
WANG F, LI C, ZHANG S, et al. Tantalum coated on titanium dioxide nanotubes by plasma spraying enhances cytocompatibility for dental implants[J]. Surf Coat Tech, 2020, 382:125161. doi:10.1016/j.surfcoat.2019.125161.
|
[14] |
SOUZA J, SORDI M B, KANAZAWA M, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration[J]. Acta Biomater, 2019, 94:112-131. doi:10.1016/j.actbio.2019.05.045.
|
[15] |
LI J, HOU W, YANG Y, et al. Micro/nano-topography promotes osteogenic differentiation of bone marrow stem cells by regulating periostin expression[J]. Colloids Surf B Biointerfaces, 2022, 218:112700. doi:10.1016/j.colsurfb.2022.112700.
|
[16] |
HOU C, AN J, ZHAO D, et al. Surface modification techniques to produce micro/nano-scale topographies on Ti-based implant surfaces for improved osseointegration[J]. Front Bioeng Biotechnol, 2022, 10:835008. doi:10.3389/fbioe.2022.835008.
|
[17] |
BENČINA M, IGLIČ A, MOZETIČ M, et al. Crystallized TiO2 nanosurfaces in biomedical applications[J]. Nanomaterials(Basel), 2020, 10(6):1121. doi:10.3390/nano10061121.
|
[18] |
KIM S Y, KIM Y K, PARK I S, et al. Effect of alkali and heat treatments for bioactivity of TiO2 nanotubes[J]. Applied Surface Science, 2014, 321:412-419. doi:10.1016/j.apsusc.2014.09.177.
|
[19] |
EPIFANI M, ZAMANI R, ARBIOL J, et al. Soft chemistry routes to transparent metal oxide thin films. The case of sol-gel synthesis and structural characterization of Ta2O5 thin films from tantalum chloromethoxide[J]. Thin Solid Films, 2014, 555:39-41. doi:10.1016/j.tsf.2013.05.139.
|
[20] |
GUI N, XU W, MYERS D E, et al. The effect of ordered and partially ordered surface topography on bone cell responses:a review[J]. Biomater Sci, 2018, 6(2):250-264. doi:10.1039/c7bm01016h.
|
[21] |
NOURI-GOUSHKI M, ANGELONI L, MODARESIFAR K, et al. 3D-printed submicron patterns reveal the interrelation between cell adhesion,cell mechanics,and osteogenesis[J]. ACS Appl Mater Interfaces, 2021, 13(29):33767-33781. doi:10.1021/acsami.1c03687.
|