Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (8): 893-896.doi: 10.11958/20231646
• Review • Previous Articles
ZHANG Ledan1(), JIN Mingxing2, LIU Yandi2,△(
)
Received:
2023-11-14
Revised:
2024-02-28
Published:
2024-08-15
Online:
2024-08-16
Contact:
E-mail:ZHANG Ledan, JIN Mingxing, LIU Yandi. Advances in the diagnostic and monitoring value of glycocalyx injury in inflammatory bowel disease[J]. Tianjin Medical Journal, 2024, 52(8): 893-896.
CLC Number:
[1] | COLLABORATORS G I B D. The global,regional, and national burden of inflammatory bowel disease in 195 countries and territories,1990-2017:a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet Gastroenterol Hepatol, 2020, 5(1):17-30. doi:10.1016/S2468-1253(19)30333-4. |
[2] | BRUSCOLI S, FEBO M, RICCARDI C, et al. Glucocorticoid therapy in inflammatory bowel disease:mechanisms and clinical practice[J]. Front Immunol, 2021, 12:691480. doi:10.3389/fimmu.2021.691480. |
[3] | CORNISH J S, WIRTHGEN E, DABRITZ J. Biomarkers predictive of response to thiopurine therapy in inflammatory bowel disease[J]. Front Med(Lausanne), 2020, 7:8. doi:10.3389/fmed.2020.00008. |
[4] | SCHOULTZ I, KEITA A V. The intestinal barrier and current techniques for the assessment of gut permeability[J]. Cells, 2020, 9(8):1909. doi:10.3390/cells9081909. |
[5] | QU J, CHENG Y, WU W, et al. Glycocalyx impairment in vascular disease:focus on inflammation[J]. Front Cell Dev Biol, 2021, 9:730621. doi:10.3389/fcell.2021.730621. |
[6] | XIE Z, BORSET M, SVEEN K, et al. Markers of endothelial glycocalyx dysfunction in Clarkson disease[J]. J Transl Med, 2022, 20(1):380. doi:10.1186/s12967-022-03587-1. |
[7] | GRONDIN J A, KWON Y H, FAR P M, et al. Mucins in intestinal mucosal defense and inflammation:learning from clinical and experimental studies[J]. Front Immunol, 2020, 11:2054. doi:10.3389/fimmu.2020.02054. |
[8] | ISKANDAR H N, CIORBA M A. Biomarkers in inflammatory bowel disease:current practices and recent advances[J]. Transl Res, 2012, 159(4):313-325. doi:10.1016/j.trsl.2012.01.001. |
[9] | CHEN Y H, WANG L, FENG S Y, et al. The relationship between C-reactive protein/albumin ratio and disease activity in patients with inflammatory bowel disease[J]. Gastroenterol Res Pract, 2020,2020:3467419. doi:10.1155/2020/3467419. |
[10] | LIU D, SAIKAM V, SKRADA K A, et al. Inflammatory bowel disease biomarkers[J]. Med Res Rev, 2022, 42(5):1856-1887. doi:10.1002/med.21893. |
[11] | GUO X, HUANG C, XU J, et al. Gut microbiota is a potential biomarker in inflammatory bowel disease[J]. Front Nutr, 2021, 8:818902. doi:10.3389/fnut.2021.818902. |
[12] | AITTAN E, GRALNEK I M, BERNS M S. The new proactive approach and precision medicine in Crohn's disease[J]. Biomedicines, 2020, 8(7):193. doi:10.3390/biomedicines8070193. |
[13] | MURRAY J, KOK K B, AYLING R M. Fecal calprotectin in gastrointestinal disease[J]. Clin Chem, 2023, 69(7):699-710. doi:10.1093/clinchem/hvad051. |
[14] | FREEMAN K, WILLIS B H, FRASER H, et al. Faecal calprotectin to detect inflammatory bowel disease:a systematic review and exploratory meta-analysis of test accuracy[J]. BMJ Open, 2019, 9(3):e27428. doi:10.1136/bmjopen-2018-027428. |
[15] | HU Z, CANO I, D’AMORE P A. Update on the role of the endothelial glycocalyx in angiogenesis and vascular inflammation[J]. Front Cell Dev Biol, 2021, 9:734276. doi:10.3389/fcell.2021.734276. |
[16] | FRANCEKOVIĆ P, GLIEMANN L. Endothelial glycocalyx preservation-impact of nutrition and lifestyle[J]. Nutrients, 2023, 15(11):2573. doi:10.3390/nu15112573. |
[17] | YANG J, LEBLANC M E, CANO I, et al. ADAM10 and ADAM17 proteases mediate proinflammatory cytokine-induced and constitutive cleavage of endomucin from the endothelial surface[J]. J Biol Chem, 2020, 295(19):6641-6651. doi:10.1074/jbc.RA119.011192. |
[18] | PUCHWEIN-SCHWEPCKE A, GENZEL-BOROVICZENY O, NUSSBAUM C. The endothelial glycocalyx:physiology and pathology in neonates,infants and children[J]. Front Cell Dev Biol, 2021, 9:733557. doi:10.3389/fcell.2021.733557. |
[19] | DOGNE S, FLAMION B. Endothelial glycocalyx impairment in disease:focus on hyaluronan shedding[J]. Am J Pathol, 2020, 190(4):768-780. doi:10.1016/j.ajpath.2019.11.016. |
[20] | YANY Y, SCHMIDT E P. The endothelial glycocalyx:an important regulator of the pulmonary vascular barrier[J]. Tissue Barriers, 2013, 1(1):e23494. doi:10.4161/tisb.23494. |
[21] | AN J, LIU Y, WANG Y, et al. The role of intestinal mucosal barrier in autoimmune disease:a potential target[J]. Front Immunol, 2022, 13:871713. doi:10.3389/fimmu.2022.871713. |
[22] | SCHNEIDER H, PELASEYED T, SEVNSSON F, et al. Study of mucin turnover in the small intestine by in vivo labeling[J]. Sci Rep, 2018, 8(1):5760. doi:10.1038/s41598-018-24148-x. |
[23] | MARTENS E C, NEUMANN M, DESAI M S. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier[J]. Nat Rev Microbiol, 2018, 16(8):457-470. doi:10.1038/s41579-018-0036-x. |
[24] | PARAY B A, ALBESHR M F, JAN A T, et al. Leaky gut and autoimmunity:an intricate balance in individuals health and the diseased state[J]. Int J Mol Sci, 2020, 21(24):9770. doi:10.3390/ijms21249770. |
[25] | SEGRIST E, CHERRY S. Using diverse model systems to define intestinal epithelial defenses to enteric viral infections[J]. Cell Host Microbe, 2020, 27(3):329-344. doi:10.1016/j.chom.2020.02.003. |
[26] | HANSSON G C. Mucins and the microbiome[J]. Annu Rev Biochem, 2020,89:769-793. doi:10.1146/annurev-biochem-011520-105053. |
[27] | LI H, HAO Y, YANG L L, et al. MCTR1 alleviates lipopolysaccharide-induced acute lung injury by protecting lung endothelial glycocalyx[J]. J Cell Physiol, 2020, 235(10):7283-7294. doi:10.1002/jcp.29628. |
[28] | HU C, LIAO S, LV L, et al. Intestinal immune imbalance is an alarm in the development of IBD[J]. Mediators Inflamm, 2023,2023:1073984. doi:10.1155/2023/1073984. |
[29] | MAGRO D O, KOTZE P G, MARTINEZ C A R, et al. Changes in serum levels of lipopolysaccharides and CD26 in patients with Crohn's disease[J]. Intest Res, 2017, 15(3):352-357. doi:10.5217/ir.2017.15.3.352. |
[30] | LAYUNTA E, JAVERFELT S, DOLAN B, et al. IL-22 promotes the formation of a MUC17 glycocalyx barrier in the postnatal small intestine during weaning[J]. Cell Rep, 2021, 34(7):108757. doi:10.1016/j.celrep.2021.108757. |
[31] | VILLALBA N, BABY S, YUAN S Y. The endothelial glycocalyx as a double-edged sword in microvascular homeostasis and pathogenesis[J]. Front Cell Dev Biol, 2021, 9:711003. doi:10.3389/fcell.2021.711003. |
[32] | NIGHOT M, GANAPATHY A S, SAHA K, et al. Matrix metalloproteinase MMP-12 promotes macrophage transmigration across intestinal epithelial tight junctions and increases severity of experimental colitis[J]. J Crohns Colitis, 2021, 15(10):1751-1765. doi:10.1093/ecco-jcc/jjab064. |
[33] | LIN J C, WU J Q, WANG F, et al. QingBai decoction regulates intestinal permeability of dextran sulphate sodium-induced colitis through the modulation of notch and NF-κB signalling[J]. Cell Prolif, 2019, 52(2):e12547. doi:10.1111/cpr.12547. |
[34] | WU D, ZHOU J, CREYER M N, et al. Phenolic-enabled nanotechnology:versatile particle engineering for biomedicine[J]. Chem Soc Rev, 2021, 50(7):4432-4483. doi:10.1039/d0cs00908c. |
[35] | POLEDNICZEK M, NEUMAYER C, KOPP C W, et al. Micro- and macrovascular effects of inflammation in peripheral artery disease-pathophysiology and translational therapeutic approaches[J]. Biomedicines, 2023, 11(8):2284. doi:10.3390/biomedicines11082284. |
[36] | MILUSEV A, DESPONT A, SHAW J, et al. Inflammatory stimuli induce shedding of heparan sulfate from arterial but not venous porcine endothelial cells leading to differential proinflammatory and procoagulant responses[J]. Sci Rep, 2023, 13(1):4483. doi:10.1038/s41598-023-31396-z. |
[37] | TAGHAVI S, ABDULAH S, SHAHEEN F, et al. Glycocalyx degradation and the endotheliopathy of viral infection[J]. PLoS One, 2022, 17(10):e0276232. doi:10.1371/journal.pone.0276232. |
[38] | DERKACZ A, OLCZYK P, OLCZYK K, et al. The role of extracellular matrix components in inflammatory bowel diseases[J]. J Clin Med, 2021, 10(5):1122. doi:10.3390/jcm10051122. |
[39] | DERKACZ A, OLCZYK P, JURA-POLTORAK A, et al. The diagnostic usefulness of circulating profile of extracellular matrix components:sulfated glycosaminoglycans(sGAG),hyaluronan(HA) and extracellular part of Syndecan-1(sCD138) in patients with Crohn's disease and ulcerative colitis[J]. J Clin Med, 2021, 10(5):1122. doi:10.3390/jcm10051122. |
[40] | FLOER M, CLAUSEN M, MEISTER T, et al. Soluble syndecan-1 as marker of intestinal inflammation:a preliminary study and evaluation of a new panel of biomarkers for non-invasive prediction of active ulcerative colitis[J]. Adv Clin Exp Med, 2021, 30(7):655-660. doi:10.17219/acem/139040. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||