Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (10): 1110-1115.doi: 10.11958/20240059
• Review • Previous Articles Next Articles
YAO He1(), LIN Yanli2, CUI Yumeng2, YAN Xinlong1,△(
)
Received:
2024-01-08
Revised:
2024-01-31
Published:
2024-10-15
Online:
2024-10-14
Contact:
△ E-mail:YAO He, LIN Yanli, CUI Yumeng, YAN Xinlong. Research progress on the role and mechanism of exosomal circRNA in gastric cancer[J]. Tianjin Medical Journal, 2024, 52(10): 1110-1115.
CLC Number:
名称 | 生物学功能 | 机制 | 表达水平 |
---|---|---|---|
circ_0079439[ | 增殖(-)、迁移(-) | 未知 | 下调 |
circNFATC3[ | 增殖(+) | 结合IGF2BP3蛋白抑制其泛素化 | 上调 |
CM-248aa[ | 增殖(-)、迁移(-) | 靶向SET-PP2A蛋白抑制胃癌进展 | 下调 |
circ_0088300[ | 增殖(+) | 结合miR-1305调节JAK/STAT信号传导途径 | 上调 |
circSHKBP1[ | 增殖(+)、迁移(+)、侵袭(+)、淋巴转移、血管生成 | 靶向miR-582-3p/HuR/VEGF轴 | 上调 |
circRanGAP1[ | 增殖(+)、迁移(+)、侵袭(+)、肺转移 | 靶向miR-877-3p-VEGFA轴 | 上调 |
circUBE2Q2[ | 腹膜转移 | 靶向miR-370-3p-STAT3轴 | 上调 |
circRELLl[ | 增殖(-)、迁移(-)、侵袭(-) | 结合miR-637、下调EPHB3蛋白激活自噬 | 下调 |
circNRIP1[ | 转移(+) | 靶向AKT/mTOR轴 | 上调 |
circ_0001789[ | 增殖(+)、血管生成 | 靶向miR-140-3p/PAK2轴增加VEGF-A蛋白的表达 | 上调 |
circTMEM181[ | PD-1抗性 | 诱导巨噬细胞CD39蛋白表达增强 | 上调 |
circ_0008253[ | OXA抗性 | 未知 | 上调 |
circPRRXl[ | ADR抗性 | 靶向miR-3064-5p和PTPN14基因 | 上调 |
circ-LDLRAD3[ | DDP抗性、增殖(+)、侵袭(+) | 靶向miR-58832-SOX5轴 | 上调 |
ciRs-133[ | 促进脂肪细胞分化 | 激活miR-133-PRDM16轴 | 上调 |
Tab.1 Role of exosomal circRNAs in GC
名称 | 生物学功能 | 机制 | 表达水平 |
---|---|---|---|
circ_0079439[ | 增殖(-)、迁移(-) | 未知 | 下调 |
circNFATC3[ | 增殖(+) | 结合IGF2BP3蛋白抑制其泛素化 | 上调 |
CM-248aa[ | 增殖(-)、迁移(-) | 靶向SET-PP2A蛋白抑制胃癌进展 | 下调 |
circ_0088300[ | 增殖(+) | 结合miR-1305调节JAK/STAT信号传导途径 | 上调 |
circSHKBP1[ | 增殖(+)、迁移(+)、侵袭(+)、淋巴转移、血管生成 | 靶向miR-582-3p/HuR/VEGF轴 | 上调 |
circRanGAP1[ | 增殖(+)、迁移(+)、侵袭(+)、肺转移 | 靶向miR-877-3p-VEGFA轴 | 上调 |
circUBE2Q2[ | 腹膜转移 | 靶向miR-370-3p-STAT3轴 | 上调 |
circRELLl[ | 增殖(-)、迁移(-)、侵袭(-) | 结合miR-637、下调EPHB3蛋白激活自噬 | 下调 |
circNRIP1[ | 转移(+) | 靶向AKT/mTOR轴 | 上调 |
circ_0001789[ | 增殖(+)、血管生成 | 靶向miR-140-3p/PAK2轴增加VEGF-A蛋白的表达 | 上调 |
circTMEM181[ | PD-1抗性 | 诱导巨噬细胞CD39蛋白表达增强 | 上调 |
circ_0008253[ | OXA抗性 | 未知 | 上调 |
circPRRXl[ | ADR抗性 | 靶向miR-3064-5p和PTPN14基因 | 上调 |
circ-LDLRAD3[ | DDP抗性、增殖(+)、侵袭(+) | 靶向miR-58832-SOX5轴 | 上调 |
ciRs-133[ | 促进脂肪细胞分化 | 激活miR-133-PRDM16轴 | 上调 |
[1] | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020:Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi:10.3322/caac.21660. |
[2] | FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Cancer statistics for the year 2020:an overview[J]. Int J Cancer, 2021, 149(4):778-789. doi:10.1002/ijc.33588. |
[3] | 郭振江, 赵光远, 杜立强, 等. 进展期胃癌脉管侵犯术前列线图预测模型的建立和验证[J]. 天津医药, 2023, 51(12):1382-1386. |
GUO Z J, ZHANG G Y, DU L Q, et al. Establishment and validation of a predictive model for vascular invasion in advanced gastric cancer using preoperative line graphs[J]. Tianjin Med J, 2023, 51(12):1382-1386. doi:10.11958/20230513. | |
[4] | LOPEZ-BELTRAN A, CHENG L, GEVAERT T, et al. Current and emerging bladder cancer biomarkers with an emphasis on urine biomarkers[J]. Expert Rev Mol Diagn, 2020, 20(2):231-243. doi:10.1080/14737159.2020.1699791. |
[5] | TANG X, REN H, GUO M, et al. Review on circular RNAs and new insights into their roles in cancer[J]. Comput Struct Biotechnol J, 2021, 19:910-928. doi:10.1016/j.csbj.2021.01.018. |
[6] | WANG D, LI R, JIANG J, et al. Exosomal circRNAs: Novel biomarkers and therapeutic targets for gastrointestinal tumors[J]. Biomed Pharmacother, 2023, 157:114053. doi:10.1016/j.biopha.2022.114053. |
[7] | KRISTENSEN L S, JAKOBSEN T, HAGER H, et al. The emerging roles of circRNAs in cancer and oncology[J]. Nat Rev Clin Oncol, 2022, 19(3):188-206. doi:10.1038/s41571-021-00585-y. |
[8] | MAN W, CUI Y, LI J, et al. circTAB2 inhibits lung cancer proliferation,migration and invasion by sponging miR-3142 to upregulate GLIS2[J]. Apoptosis, 2023, 28(3/4):471-484. doi:10.1007/s10495-022-01805-1. |
[9] | PAN B T, JOHNSTONE R M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor[J]. Cell, 1983, 33(3):967-978. doi:10.1016/0092-8674(83)90040-5. |
[10] | WU Z, YANG Z, DAI Y, et al. Update on liquid biopsy in clinical management of non-small cell lung cancer[J]. Onco Targets Ther, 2019, 12:5097-5109. doi:10.2147/OTT.S203070. |
[11] | DEB A, GUPTA S, MAZUMDER P B. Exosomes: A new horizon in modern medicine[J]. Life Sci, 2021, 264:118623. doi:10.1016/j.lfs.2020.118623. |
[12] | DAI J, SU Y, ZHONG S, et al. Exosomes: key players in cancer and potential therapeutic strategy[J]. Signal Transduct Target Ther, 2020, 5(1):145. doi:10.1038/s41392-020-00261-0. |
[13] | FANG J, ZHANG Y, CHEN D, et al. Exosomes and exosomal cargos:a promising world for ventricular remodeling following myocardial infarction[J]. Int J Nanomedicine, 2022, 17:4699-4719. doi:10.2147/IJN.S377479. |
[14] | WANG X, YAO X, XIE T, et al. Exosome-derived uterine miR-218 isolated from cows with endometritis regulates the release of cytokines and chemokines[J]. Microb Biotechnol, 2020, 13(4):1103-1117. doi:10.1111/1751-7915.13565. |
[15] | WU H, FU M, LIU J, et al. The role and application of small extracellular vesicles in gastric cancer[J]. Mol Cancer, 2021, 20(1):71. doi:10.1186/s12943-021-01365-z. |
[16] | LI J, ZHANG G, LIU C G, et al. The potential role of exosomal circRNAs in the tumor microenvironment: insights into cancer diagnosis and therapy[J]. Theranostics, 2022, 12(1):87-104. doi:10.7150/thno.64096. |
[17] | LI T, LI X, HAN G, et al. The therapeutic potential and clinical significance of exosomes as carriers of drug delivery system[J]. Pharmaceutics, 2022, 15(1):21. doi:10.3390/pharmaceutics15010021. |
[18] | LI X, LIN Y L, SHAO J K, et al. Plasma exosomal hsa_circ_0079439 as a novel biomarker for early detection of gastric cancer[J]. World J Gastroenterol, 2023, 29(22):3482-3496. doi:10.3748/wjg.v29.i22.3482. |
[19] | WEN S Y, QADIR J, YANG B B. Circular RNA translation: novel protein isoforms and clinical significance[J]. Trends Mol Med, 2022, 28(5):405-420. doi:10.1016/j.molmed.2022.03.003. |
[20] | MEMCZAK S, JENS M, ELEFSINIOTI A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441):333-338. doi:10.1038/nature11928. |
[21] | JECK W R, SORRENTINO J A, WANG K, et al. Circular RNAs are abundant,conserved,and associated with ALU repeats[J]. RNA, 2013, 19(2):141-157. doi:10.1261/rna.035667.112. |
[22] | HUANG A, ZHENG H, WU Z, et al. Circular RNA-protein interactions: functions,mechanisms,and identification[J]. Theranostics, 2020, 10(8):3503-3517. doi:10.7150/thno.42174. |
[23] | YANG F, MA Q, HUANG B, et al. CircNFATC3 promotes the proliferation of gastric cancer through binding to IGF2BP3 and restricting its ubiquitination to enhance CCND1 mRNA stability[J]. J Transl Med, 2023, 21(1):402. doi:10.1186/s12967-023-04235-y. |
[24] | LIU H, FANG D, ZHANG C, et al. Circular MTHFD2L RNA-encoded CM-248aa inhibits gastric cancer progression by targeting the SET-PP2A interaction[J]. Mol Ther, 2023, 31(6):1739-1755. doi:10.1016/j.ymthe.2023.04.013. |
[25] | CHEN S, CAO X, ZHANG J, et al. circVAMP3 drives CAPRIN1 phase separation and inhibits hepatocellular carcinoma by suppressing c-Myc translation[J]. Adv Sci(Weinh), 2022, 9(8):e2103817. doi:10.1002/advs.202103817. |
[26] | LIU C X, CHEN L L. Circular RNAs: Characterization,cellular roles,and applications[J]. Cell, 2022, 185(12):2016-2034. doi:10.1016/j.cell.2022.04.021. |
[27] | HAN Z, CHEN H, GUO Z, et al. Circular RNAs and their role in exosomes[J]. Front Oncol, 2022, 12:848341. doi:10.3389/fonc.2022.848341. |
[28] | LAI H, LI Y, ZHANG H, et al. exoRBase 2.0: an atlas of mRNA,lncRNA and circRNA in extracellular vesicles from human biofluids[J]. Nucleic Acids Res, 2022, 50(D1):D118-D128. doi:10.1093/nar/gkab1085. |
[29] | SHI H, HUANG S, QIN M, et al. Exosomal circ_0088300 derived from cancer-associated fibroblasts acts as a miR-1305 sponge and promotes gastric carcinoma cell tumorigenesis[J]. Front Cell Dev Biol, 2021, 9:676319. doi:10.3389/fcell.2021.676319. |
[30] | XIE M, YU T, JING X, et al. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation[J]. Mol Cancer, 2020, 19(1):112. doi:10.1186/s12943-020-01208-3. |
[31] | LU J, WANG Y H, YOON C, et al. Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877-3p to facilitate gastric cancer invasion and metastasis[J]. Cancer Lett, 2020, 471:38-48. doi:10.1016/j.canlet.2019.11.038. |
[32] | YANG J, ZHANG X, CAO J, et al. Circular RNA UBE2Q2 promotes malignant progression of gastric cancer by regulating signal transducer and activator of transcription 3-mediated autophagy and glycolysis[J]. Cell Death Dis, 2021, 12(10):910. doi:10.1038/s41419-021-04364-6. |
[33] | SANG H, ZHANG W, PENG L, et al. Exosomal circRELL1 serves as a miR-637 sponge to modulate gastric cancer progression via regulating autophagy activation[J]. Cell Death Dis, 2022, 13(1):56. doi:10.1038/s41419-021-04364-6. |
[34] | ZHANG X, WANG S, WANG H, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway[J]. Mol Cancer, 2019, 18(1):20. doi:10.1186/s12943-018-0935-5. |
[35] | YOU J, CHEN Y, CHEN D, et al. Circular RNA 0001789 sponges miR-140-3p and regulates PAK2 to promote the progression of gastric cancer[J]. J Transl Med, 2023, 21(1):83. doi:10.1186/s12967-022-03853-2. |
[36] | LU J C, ZHANG P F, HUANG X Y, et al. Amplification of spatially isolated adenosine pathway by tumor-macrophage interaction induces anti-PD1 resistance in hepatocellular carcinoma[J]. J Hematol Oncol, 2021, 14(1):200. doi:10.1186/s13045-021-01207-x. |
[37] | YU D, CHANG Z, LIU X, et al. Macrophage-derived exosomes regulate gastric cancer cell oxaliplatin resistance by wrapping circ 0008253[J]. Cell Cycle, 2023, 22(6):705-717. doi:10.1080/15384101.2022.2146839. |
[38] | WANG S, PING M, SONG B, et al. Exosomal circPRRX1 enhances doxorubicin resistance in gastric cancer by regulating miR-3064-5p/PTPN14 signaling[J]. Yonsei Med J, 2020, 61(9):750-761. doi:10.3349/ymj.2020.61.9.750. |
[39] | LIANG Q, CHU F, ZHANG L, et al. circ-LDLRAD3 knockdown reduces cisplatin chemoresistance and inhibits the development of gastric cancer with cisplatin resistance through miR-588 enrichment-mediated SOX5 inhibition[J]. Gut Liver, 2023, 17(3):389-403. doi:10.5009/gnl210195. |
[40] | HE Y D, TAO W, HE T, et al. A urine extracellular vesicle circRNA classifier for detection of high-grade prostate cancer in patients with prostate-specific antigen 2-10 ng/mL at initial biopsy[J]. Mol Cancer, 2021, 20(1):96. doi:10.1186/s12943-021-01388-6. |
[41] | LUGANO R, RAMACHANDRAN M, DIMBERG A. Tumor angiogenesis: causes,consequences,challenges and opportunities[J]. Cell Mol Life Sci, 2020, 77(9):1745-1770. doi:10.1007/s00018-019-03351-7. |
[42] | BOUMAHDI S, DE SAUVAGE F J. The great escape: tumour cell plasticity in resistance to targeted therapy[J]. Nat Rev Drug Discov, 2020, 19(1):39-56. doi:10.1038/s41573-019-0044-1. |
[43] | VAN NIEL G, CARTER D R F, CLAYTON A, et al. Challenges and directions in studying cell-cell communication by extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2022, 23(5);369-382. doi:10.1038/s41580-022-00460-3. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||