Tianjin Medical Journal ›› 2025, Vol. 53 ›› Issue (7): 776-784.doi: 10.11958/20250966
• Review • Previous Articles
YU Hui1(), LIU Hao1,2, CAI Fengli3, ZHAO Jing1, BAI Xiangsen1, TIAN Guoliang1, ZHANG Hanyue1, ZHANG Liyuan4,△(
)
Received:
2025-03-10
Revised:
2025-05-05
Published:
2025-07-15
Online:
2025-07-21
Contact:
△E-mail:YU Hui, LIU Hao, CAI Fengli, ZHAO Jing, BAI Xiangsen, TIAN Guoliang, ZHANG Hanyue, ZHANG Liyuan. New advances on detecting obstructive sleep apnea based on acoustic information[J]. Tianjin Medical Journal, 2025, 53(7): 776-784.
CLC Number:
作者 | 样本分布 | 特征 | 模型 | 模型识别OSA性能 |
---|---|---|---|---|
Ding等[ | 正常7例,轻度OSA 6例, 中度17例,重度65例 | MFCC,VGG16和PANN提取的深度特征 | 特征筛选:XGBoost; 分类:KNN,RF | MFCC-KNN、VGG16-KNN和PANN-KNN识别准确度为100% |
Ding等[ | 正常10例,轻度OSA 6例, 中度10例,重度24例 | 梅尔频谱图 | VGG19+LSTM | 识别准确度99.31%,敏感度99.13%,特异度99.58% |
Song等[ | 受试者40例, AHI为37.9±28.9 | MFCC,PLP,BSF,PR800,F0等 | 3个模型融合:声学特征+ XGBoost,梅尔频谱图+CNN, 梅尔频谱图+ ResNet18 | 准确度83.44%,召回率85.27% |
Luo等[ | 受试者32例,AHI为32.8±24.4 | MFCC | TCN | OSA相关打鼾检测准确度96.7% |
Sun等[ | 正常6例,OSA 24例 | MFCC,PLP,BSF SE,PR800,F0,共振峰 GTCC | 特征筛选:Fisher比率; 分类:GMM | OSA识别准确度90.0%,精确度95.7% |
Cheng等[ | 正常10例,OSA 33例 | MFCC,Fbanks,LPC | LSTM | 呼吸事件相关打鼾和正常打鼾的分类准确度为95.3% |
Castillo-Escario等[ | 正常2例,轻度OSA 3例, 中度13例,重度7例 | 频谱图 | CNN | OSA识别的准确度、敏感度和特异度分别为88.5%、71.8%和89.1%。 |
Jiang等[ | 正常4例,OSA 8例 | LPC,PR800,MFCC,SE | 特征筛选:随机森林分类:LR、SVM、贝叶斯、KNN、ANN | LR的分类准确度、敏感度、特异度均达到100% |
Shen等[ | 正常16例,OSA 16例 | MFCC | LSTM | 分类准确度、敏感度和特异度分别为87%、84%和91% |
Jiang等[ | 正常4例,OSA 11例 | 时域波形,频谱、声谱、梅尔频谱及CQT声谱图 | CNNs-DNNs,CNNs-LSTMs-DNNs | 梅尔频谱图结合CNNs-LSTMs-DNNs效果最好,准确度达到95.07% |
Tab.1 Related research on the diagnosis of OSA based on snoring
作者 | 样本分布 | 特征 | 模型 | 模型识别OSA性能 |
---|---|---|---|---|
Ding等[ | 正常7例,轻度OSA 6例, 中度17例,重度65例 | MFCC,VGG16和PANN提取的深度特征 | 特征筛选:XGBoost; 分类:KNN,RF | MFCC-KNN、VGG16-KNN和PANN-KNN识别准确度为100% |
Ding等[ | 正常10例,轻度OSA 6例, 中度10例,重度24例 | 梅尔频谱图 | VGG19+LSTM | 识别准确度99.31%,敏感度99.13%,特异度99.58% |
Song等[ | 受试者40例, AHI为37.9±28.9 | MFCC,PLP,BSF,PR800,F0等 | 3个模型融合:声学特征+ XGBoost,梅尔频谱图+CNN, 梅尔频谱图+ ResNet18 | 准确度83.44%,召回率85.27% |
Luo等[ | 受试者32例,AHI为32.8±24.4 | MFCC | TCN | OSA相关打鼾检测准确度96.7% |
Sun等[ | 正常6例,OSA 24例 | MFCC,PLP,BSF SE,PR800,F0,共振峰 GTCC | 特征筛选:Fisher比率; 分类:GMM | OSA识别准确度90.0%,精确度95.7% |
Cheng等[ | 正常10例,OSA 33例 | MFCC,Fbanks,LPC | LSTM | 呼吸事件相关打鼾和正常打鼾的分类准确度为95.3% |
Castillo-Escario等[ | 正常2例,轻度OSA 3例, 中度13例,重度7例 | 频谱图 | CNN | OSA识别的准确度、敏感度和特异度分别为88.5%、71.8%和89.1%。 |
Jiang等[ | 正常4例,OSA 8例 | LPC,PR800,MFCC,SE | 特征筛选:随机森林分类:LR、SVM、贝叶斯、KNN、ANN | LR的分类准确度、敏感度、特异度均达到100% |
Shen等[ | 正常16例,OSA 16例 | MFCC | LSTM | 分类准确度、敏感度和特异度分别为87%、84%和91% |
Jiang等[ | 正常4例,OSA 11例 | 时域波形,频谱、声谱、梅尔频谱及CQT声谱图 | CNNs-DNNs,CNNs-LSTMs-DNNs | 梅尔频谱图结合CNNs-LSTMs-DNNs效果最好,准确度达到95.07% |
作者 | 发表年份 | 样本分布 | 特征 | 模型 | 模型性能 |
---|---|---|---|---|---|
Bahr-Hamm等[ | 2023 | 正常(R)15例,轻度OSA(L) 27例, 中度(M)21例,重度(H)23例 | 鼾声、心电图和胸腹部偏移信号的采样熵 | SVM | AUC:R vs. L:61%,R vs. M:68%,R vs.H:84%,L vs. M:63%,L vs. H:82%,M vs. H:65% |
YE等[ | 2024 | 正常9例,轻度OSA 11例, 中度19例,重度55例 | MFCC,LPC,SE, PR800,F0,共振峰等 | ReliefF-mRMR 特征筛选,SVM,LR,KNN,NB分类 | SVM在AHI分别为5、15、30的阈值下,识别OSA准确度分别为100%、100%和95.94% |
Luo等[ | 2020 | 受试者132例,其中男109例,AHI为40.62±26.62,女23例,AHI为24.73±27.64 | CNN提取的深度特征 | 逻辑回归 | 在AHI分别为c15、30的阈值下,分类准确度分别为80.17%和80.21% |
Cho等[ | 2022 | 受试者423例,AHI为32.6±24.4 | LPC,MFCC,SE等 | 随机森林 | 在AHI分别为5、15、30的阈值下,识别OSA准确度分别为88.2%、82.3%和81.7% |
Hou等[ | 2021 | 正常10例,轻度OSA 23例, 中度24例,重度36例 | ECD | GMM | 分类准确度达87.74%,其中正常、轻度、中度和重度的准确度分别为100%,81.48%,75.75%和93.75% |
Qiu等[ | 2024 | 正常26例,轻度OSA 45例, 中度44例,重度82例 | 经PubMedBERT 转换的MFCC | XGBoost | 分类准确度为58%,正常、轻度、中度和重度的准确度分别为50%、50%、66.7%和75% |
Fang等[ | 2025 | 正常40例,轻度OSA 40例, 中度72例,重度313例 | 梅尔频谱图 | AST | 在AHI分别为5、15、30的阈值下,识别OSA准确度分别为92.6%、88.7%和83.0% |
Le等[ | 2023 | 正常282例,轻度OSA 316例, 中度316例,重度401例 | 梅尔频谱图 | DNN+线性回归模型 | 按AHI分别为5、15和30划分,敏感度为0.97、0.85、0.96,特异度为0.89、0.84、0.91 |
Romero等[ | 2022 | 正常13例,轻度OSA 67例, 中度38例,重度39例 | 梅尔滤波器组特征 | DNN | AHI=15:敏感度79%,特异度80%; AHI=30:敏感度78%,特异度93% |
Wang等[ | 2022 | 训练组116例,AHI为27.6(9.9~61.6); 验证组19例,AHI为18.9(5.9~62.1); 测试组59例,AHI为24.4(6.6~54.3) | 梅尔频谱图 | OSAnet | 在AHI=5、10,15、30的阈值下,识别OSA敏感度分别为93.6%、82.5%、88.5%和95.6% |
Tab.2 Related studies on the severity of OSA based on snoring
作者 | 发表年份 | 样本分布 | 特征 | 模型 | 模型性能 |
---|---|---|---|---|---|
Bahr-Hamm等[ | 2023 | 正常(R)15例,轻度OSA(L) 27例, 中度(M)21例,重度(H)23例 | 鼾声、心电图和胸腹部偏移信号的采样熵 | SVM | AUC:R vs. L:61%,R vs. M:68%,R vs.H:84%,L vs. M:63%,L vs. H:82%,M vs. H:65% |
YE等[ | 2024 | 正常9例,轻度OSA 11例, 中度19例,重度55例 | MFCC,LPC,SE, PR800,F0,共振峰等 | ReliefF-mRMR 特征筛选,SVM,LR,KNN,NB分类 | SVM在AHI分别为5、15、30的阈值下,识别OSA准确度分别为100%、100%和95.94% |
Luo等[ | 2020 | 受试者132例,其中男109例,AHI为40.62±26.62,女23例,AHI为24.73±27.64 | CNN提取的深度特征 | 逻辑回归 | 在AHI分别为c15、30的阈值下,分类准确度分别为80.17%和80.21% |
Cho等[ | 2022 | 受试者423例,AHI为32.6±24.4 | LPC,MFCC,SE等 | 随机森林 | 在AHI分别为5、15、30的阈值下,识别OSA准确度分别为88.2%、82.3%和81.7% |
Hou等[ | 2021 | 正常10例,轻度OSA 23例, 中度24例,重度36例 | ECD | GMM | 分类准确度达87.74%,其中正常、轻度、中度和重度的准确度分别为100%,81.48%,75.75%和93.75% |
Qiu等[ | 2024 | 正常26例,轻度OSA 45例, 中度44例,重度82例 | 经PubMedBERT 转换的MFCC | XGBoost | 分类准确度为58%,正常、轻度、中度和重度的准确度分别为50%、50%、66.7%和75% |
Fang等[ | 2025 | 正常40例,轻度OSA 40例, 中度72例,重度313例 | 梅尔频谱图 | AST | 在AHI分别为5、15、30的阈值下,识别OSA准确度分别为92.6%、88.7%和83.0% |
Le等[ | 2023 | 正常282例,轻度OSA 316例, 中度316例,重度401例 | 梅尔频谱图 | DNN+线性回归模型 | 按AHI分别为5、15和30划分,敏感度为0.97、0.85、0.96,特异度为0.89、0.84、0.91 |
Romero等[ | 2022 | 正常13例,轻度OSA 67例, 中度38例,重度39例 | 梅尔滤波器组特征 | DNN | AHI=15:敏感度79%,特异度80%; AHI=30:敏感度78%,特异度93% |
Wang等[ | 2022 | 训练组116例,AHI为27.6(9.9~61.6); 验证组19例,AHI为18.9(5.9~62.1); 测试组59例,AHI为24.4(6.6~54.3) | 梅尔频谱图 | OSAnet | 在AHI=5、10,15、30的阈值下,识别OSA敏感度分别为93.6%、82.5%、88.5%和95.6% |
作者 | 发表年份 | 样本分布 | 特征 | 模型 | 模型性能 |
---|---|---|---|---|---|
Liu等[ | 2022 | 受试者42例,AHI中位数为27.45 | MFCC | KNN | 模型准确度为85.55%,结合年龄、性别和BMI,准确度为87.98%,鄂后,舌后和多级阻塞分别为85.88%、89.22%和88.17% |
Ding等[ | 2022 | 阻塞部位:软腭484,口咽216,舌39,会厌89 | 梅尔频谱图 | 嵌入Conv6NP的原型网络 | 模型的非加权平均召回率为77.13%,其中软腭、口咽、舌、会厌分别为75.5%、80.0%、75.0%和78.0% |
Sebastian等[ | 2020 | 共58例患者,其中舌阻塞32例,侧壁11例,软腭10例,多级5例 | 时域特征:能量,熵,零交叉率;频域特征:共振峰频率,MFCC,光谱色度特征,基波和谐波频率 | LDA | 模型的总体准确度为62%,舌/非舌阻塞准确度为77% |
Sun等[ | 2020 | 阻塞部位:软腭484,口咽216,舌39,会厌39 | TCC | 特征筛选:主成分分析;分类:SVM | 模型非加权平均召回率为87.5%,软腭、口咽、舌、会厌的准确度分别为93%,83%、74%和96% |
Sun等[ | 2021 | 阻塞部位:软腭484,口咽216,舌39,会厌89 | MSE,MFCC | 特征筛选:主成分分析;分类:SVM | 模型准确度为89.09%,敏感度为86.36%,特异度为96.4%,其中软腭、口咽、舌、会厌的敏感度分别为98.04%、80.56%、72.73%和94.12% |
Tab.3 Related studies based on snoring to determine the site of upper airway obstruction in OSA patients
作者 | 发表年份 | 样本分布 | 特征 | 模型 | 模型性能 |
---|---|---|---|---|---|
Liu等[ | 2022 | 受试者42例,AHI中位数为27.45 | MFCC | KNN | 模型准确度为85.55%,结合年龄、性别和BMI,准确度为87.98%,鄂后,舌后和多级阻塞分别为85.88%、89.22%和88.17% |
Ding等[ | 2022 | 阻塞部位:软腭484,口咽216,舌39,会厌89 | 梅尔频谱图 | 嵌入Conv6NP的原型网络 | 模型的非加权平均召回率为77.13%,其中软腭、口咽、舌、会厌分别为75.5%、80.0%、75.0%和78.0% |
Sebastian等[ | 2020 | 共58例患者,其中舌阻塞32例,侧壁11例,软腭10例,多级5例 | 时域特征:能量,熵,零交叉率;频域特征:共振峰频率,MFCC,光谱色度特征,基波和谐波频率 | LDA | 模型的总体准确度为62%,舌/非舌阻塞准确度为77% |
Sun等[ | 2020 | 阻塞部位:软腭484,口咽216,舌39,会厌39 | TCC | 特征筛选:主成分分析;分类:SVM | 模型非加权平均召回率为87.5%,软腭、口咽、舌、会厌的准确度分别为93%,83%、74%和96% |
Sun等[ | 2021 | 阻塞部位:软腭484,口咽216,舌39,会厌89 | MSE,MFCC | 特征筛选:主成分分析;分类:SVM | 模型准确度为89.09%,敏感度为86.36%,特异度为96.4%,其中软腭、口咽、舌、会厌的敏感度分别为98.04%、80.56%、72.73%和94.12% |
作者 | 发表年份 | 研究对象 | 声学特征 | 分类模型 | 结果 |
---|---|---|---|---|---|
U?ur等[ | 2023 | OSA 48例(轻、中、重度均16例),健康对照组13例(打鼾) | 由非线性特征提取模块获得 | KNN,SVM | 最佳二分类表现:准确度为95.1%,敏感度为97.9%,特异度为84.6%;最佳多分类表现: 准确度为82.0%,敏感度为82.5%,特异度为94.0% |
Yilmaz等[ | 2023 | 32例男性和8例女性,其中20例为OSA患者 | LPCC,MFCC等 | KNN,SVM | 准确度为82.5% |
Zhang等[ | 2023 | 254例因睡眠打鼾住院的患者,全部为中国男性 | 未提及 | XLSR | 最佳表现:F1值为72.5% |
Botelho等[ | 2021 | 40例男性和20例女性,其中22例为OSA患者 | 未提及 | CNN | 准确度为82.5% |
Pang等[ | 2020 | 66组语音数据,按31、13、10、12划分为正常组和轻、中、重症OSA患者 | MFCC,LPCC等 | QDA | 准确度:95.45%;该研究提出了一种新方法用于特征选择过程,使用该方法所提取的参数使得分类器性能提高了6.06% |
Simply等[ | 2020 | 305例进行了PSG的患者和93例学生志愿者 | MFCC等 | CNN,LSTM | 融合系统的AHI预测表现:皮尔逊相关系数为0.76;MAE为7.6次/h;基于AHI预测值的OSA分类:准确度为77.14%,敏感度为75%,特异度为79% |
Perero-Codosero等[ | 2020 | 525例男性受试者和232例女性受试者 | 未提及 | X-vector,DANNs | 准确度为76.60%,敏感度为77.20%,特异度为75.89% |
Espinoza-Cuadros等[ | 2016 | 125例男性对照组和301例男性OSA患者 | 超向量/i向量 | SVR | 准确度:68%/71%;敏感度:89%/92% |
Ben等[ | 2016 | 198例经过PSG检查的男性患者 | 持续元音特征,短期特征和长期特征 | SVR,回归树 | AHI的诊断一致性为67.3%,MAE为10.8次/h |
Sole-Casals等[ | 2014 | 121例重症OSA患者和127例健康对照组 | 253个声学特征,包括基频、峰值、时域、频域、LPC等 | BC,NN,SVM,KNN,AdaBoost | 最佳表现为BC模型,敏感度为81.74%,特异度为82.40% |
Tab.4 Related studies on the diagnosis of OSA based on speech
作者 | 发表年份 | 研究对象 | 声学特征 | 分类模型 | 结果 |
---|---|---|---|---|---|
U?ur等[ | 2023 | OSA 48例(轻、中、重度均16例),健康对照组13例(打鼾) | 由非线性特征提取模块获得 | KNN,SVM | 最佳二分类表现:准确度为95.1%,敏感度为97.9%,特异度为84.6%;最佳多分类表现: 准确度为82.0%,敏感度为82.5%,特异度为94.0% |
Yilmaz等[ | 2023 | 32例男性和8例女性,其中20例为OSA患者 | LPCC,MFCC等 | KNN,SVM | 准确度为82.5% |
Zhang等[ | 2023 | 254例因睡眠打鼾住院的患者,全部为中国男性 | 未提及 | XLSR | 最佳表现:F1值为72.5% |
Botelho等[ | 2021 | 40例男性和20例女性,其中22例为OSA患者 | 未提及 | CNN | 准确度为82.5% |
Pang等[ | 2020 | 66组语音数据,按31、13、10、12划分为正常组和轻、中、重症OSA患者 | MFCC,LPCC等 | QDA | 准确度:95.45%;该研究提出了一种新方法用于特征选择过程,使用该方法所提取的参数使得分类器性能提高了6.06% |
Simply等[ | 2020 | 305例进行了PSG的患者和93例学生志愿者 | MFCC等 | CNN,LSTM | 融合系统的AHI预测表现:皮尔逊相关系数为0.76;MAE为7.6次/h;基于AHI预测值的OSA分类:准确度为77.14%,敏感度为75%,特异度为79% |
Perero-Codosero等[ | 2020 | 525例男性受试者和232例女性受试者 | 未提及 | X-vector,DANNs | 准确度为76.60%,敏感度为77.20%,特异度为75.89% |
Espinoza-Cuadros等[ | 2016 | 125例男性对照组和301例男性OSA患者 | 超向量/i向量 | SVR | 准确度:68%/71%;敏感度:89%/92% |
Ben等[ | 2016 | 198例经过PSG检查的男性患者 | 持续元音特征,短期特征和长期特征 | SVR,回归树 | AHI的诊断一致性为67.3%,MAE为10.8次/h |
Sole-Casals等[ | 2014 | 121例重症OSA患者和127例健康对照组 | 253个声学特征,包括基频、峰值、时域、频域、LPC等 | BC,NN,SVM,KNN,AdaBoost | 最佳表现为BC模型,敏感度为81.74%,特异度为82.40% |
[1] | FRANKLIN K A, LINDBERG E. Obstructive sleep apnea is a common disorder in the population-a review on the epidemiology of sleep apnea[J]. J Thorac Dis, 2015, 7(8):1311-1322. doi:10.3978/j.issn.2072-1439.2015.06.11. |
[2] | YEGHIAZARIANS Y, JNEID H, TIETJENS J R, et al. Obstructive sleep apnea and cardiovascular disease: a scientific statement from the American Heart Association[J]. Circulation, 2021, 144(3):e56-e67. doi:10.1161/CIR.0000000000000988. |
[3] | PEVERNAGIE D, AARTS R M, DE MEYER M. The acoustics of snoring[J]. Sleep Med Rev, 2010, 14(2):131-144. doi:10.1016/j.smrv.2009.06.002. |
[4] | KAPUR V K, AUCKLEY D H, CHOWDHURI S, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea:an american academy of sleep medicine clinical practice guideline[J]. J Clin Sleep Med, 2017, 13(3):479-504. doi:10.5664/jcsm.6506. |
[5] | CHIANG J K, LIN Y C, LU C M, et al. Correlation between snoring sounds and obstructive sleep apnea in adults:a meta-regression analysis[J]. Sleep Sci, 2022, 15(4):463-470. doi:10.5935/1984-0063.20220068. |
[6] | GÜRPıNAR B, SALTÜRK Z, KUMRAL T L, et al. Analysis of snoring to determine the site of obstruction in obstructive sleep apnea syndrome[J]. Sleep Breath, 2021, 25(3):1427-1432. doi:10.1007/s11325-020-02252-5. |
[7] | PEREZ-PADILLA J R, SLAWINSKI E, DIFRANCESCO L M, et al. Characteristics of the snoring noise in patients with and without occlusive sleep apnea[J]. Am Rev Respir Dis, 1993, 147(3):635-644. doi:10.1164/ajrccm/147.3.635. |
[8] | FIZ J A, ABAD J, JANÉ R, et al. Acoustic analysis of snoring sound in patients with simple snoring and obstructive sleep apnoea[J]. Eur Respir J, 1996, 9(11):2365-2370. doi:10.1183/09031936.96.09112365. |
[9] | NG A K, KOH T S, BAEY E, et al. Could formant frequencies of snore signals be an alternative means for the diagnosis of obstructive sleep apnea?[J]. Sleep Med, 2008, 9(8):894-898. doi:10.1016/j.sleep.2007.07.010. |
[10] | HERZOG M, SCHMIDT A, BREMERT T, et al. Analysed snoring sounds correlate to obstructive sleep disordered breathing[J]. Eur Arch Otorhinolaryngol, 2008, 265(1):105-113. doi:10.1007/s00405-007-0408-8. |
[11] | DING L, PENG J, SONG L, et al. Automatically detecting OSAHS patients based on transfer learning and model fusion[J]. Physiol Meas, 2024, 45(5):055013. doi:10.1088/1361-6579/ad4953. |
[12] | DING L, PENG J, SONG L, et al. Automatically detecting apnea-hypopnea snoring signal based on VGG19 + LSTM[J]. Biomed Signal Process Control, 2023,80:104351. doi:10.1016/j.bspc.2022.104351. |
[13] | SONG Y, SUN X, DING L, et al. AHI estimation of OSAHS patients based on snoring classification and fusion model[J]. Am J Otolaryngol, 2023, 44(5):103964. doi:10.1016/j.amjoto.2023.103964. |
[14] | LUO H W, LI H, LU Y, et al. Design of embedded real-time system for snoring and OSA detection based on machine learning[J]. Measurement, 2023,214:112802. doi:10.1016/j.measure-ment.2023.112802. |
[15] | SUN X, DING L, SONG Y, et al. Automatic identifying OSAHS patients and simple snorers based on Gaussian mixture models[J]. Physiol Meas, 2023, 44(4):045003. doi:10.1088/1361-6579/accd43. |
[16] | CHENG S, WANG C, YUE K, et al. Automated sleep apnea detection in snoring signal using long short-term memory neural networks[J]. Biomedical Signal Processing and Control, 2022, 71(Jan. Pt. B):103238.1-103238.9. doi:10.1016/j.bspc.2021.103238. |
[17] | CASTILLO-ESCARIO Y, WERTHEN-BRABANTS L, GROENENDAAL W, et al. Convolutional neural networks for apnea detection from smartphone audio signals: effect of window size[C/OL]//2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2022:666-669[2024-11-28]. https://ieeexplore.ieee.org/document/9871396. |
[18] | JIANG Y, PENG J, SONG L. An OSAHS evaluation method based on multi-features acoustic analysis of snoring sounds[J]. Sleep Med, 2021, 84:317-323. doi:10.1016/j.sleep.2021.06.012. |
[19] | SHEN F, CHENG S, LI Z, et al. Detection of snore from OSAHS patients based on deep learning[J]. J Healthc Eng, 2020,2020:8864863. doi:10.1155/2020/8864863. |
[20] | JIANG Y, PENG J, ZHANG X. Automatic snoring sounds detection from sleep sounds based on deep learning[J]. Phys Eng Sci Med, 2020, 43(2):679-689. doi:10.1007/s13246-020-00876-1. |
[21] | BAHR-HAMM K, ABRIANI A, ANWAR A R, et al. Using entropy of snoring, respiratory effort and electrocardiography signals during sleep for OSA detection and severity classification[J]. Sleep Med, 2023, 111:21-27. doi:10.1016/j.sleep.2023.09.005. |
[22] | YE Z, PENG J, ZHANG X, et al. Identification of OSAHS patients based on ReliefF-mRMR feature selection[J]. Phys Eng Sci Med, 2024, 47(1):99-108. doi:10.1007/s13246-023-01345-1. |
[23] | LUO J, LIU H, GAO X, et al. A novel deep feature transfer-based OSA detection method using sleep sound signals[J]. Physiol Meas, 2020, 41(7):075009. doi:10.1088/1361-6579/ab9e7b. |
[24] | CHO S W, JUNG S J, SHIN J H, et al. Evaluating prediction models of sleep apnea from smartphone-recorded sleep breathing sounds[J]. JAMA Otolaryngol Head Neck Surg, 2022, 148(6):515-521. doi:10.1001/jamaoto.2022.0244. |
[25] | HOU L, PAN Q, YI H, et al. Estimating a sleep apnea hypopnea index based on the erb correlation dimension of snore sounds[J]. Front Digit Health, 2020,2:613725. doi:10.3389/fdgth.2020.613725. |
[26] | QIU X, WANG C, LI B, et al. An audio-semantic multimodal model for automatic obstructive sleep Apnea-Hypopnea Syndrome classification via multi-feature analysis of snoring sounds[J]. Front Neurosci, 2024,18:1336307. doi:10.3389/fnins.2024.1336307. |
[27] | FANG L, CAI J, HUANG Z, et al. Assessment of simulated snoring sounds with artificial intelligence for the diagnosis of obstructive sleep apnea[J]. Sleep Med, 2025, 125:100-107. doi:10.1016/j.sleep.2024.11.018. |
[28] | LE V L, KIM D, CHO E, et al. Real-time detection of sleep apnea based on breathing sounds and prediction reinforcement using home noises: algorithm development and validation[J]. J Med Internet Res, 2023,25:e44818. doi:10.2196/44818. |
[29] | ROMERO H E, MA N, BROWN G J, et al. Acoustic screening for obstructive sleep apnea in home environments based on deep neural networks[J]. IEEE J Biomed Health Inform, 2022, 26(7):2941-2950. doi:10.1109/JBHI.2022.3154719. |
[30] | WANG B, TANG X, AI H, et al. Obstructive sleep apnea detection based on sleep sounds via deep learning[J]. Nat Sci Sleep, 2022, 14:2033-2045. doi:10.2147/NSS.S373367. |
[31] | LIU Y, FENG Y, LI Y, et al. Automatic classification of the obstruction site in obstructive sleep apnea based on snoring sounds[J]. Am J Otolaryngol, 2022, 43(6):103584. doi:10.1016/j.amjoto.2022.103584. |
[32] | DING L, PENG J X. Automatic classification of snoring sounds from excitation locations based on prototypical network[J]. Applied Acoustics, 2022,195:108799. doi:10.1016/j.apacoust.2022.108799. |
[33] | SEBASTIAN A, CISTULLI P A, COHEN G, et al. Automated identification of the predominant site of upper airway collapse in obstructive sleep apnoea patients using snore signal[J]. Physiol Meas, 2020, 41(9):095005. doi:10.1088/1361-6579/abaa33. |
[34] | SUN J, HU X, CHEN C, et al. Amplitude spectrum trend-based feature for excitation location classification from snore sounds[J]. Physiol Meas, 2020, 41(8):085006. doi:10.1088/1361-6579/abaa34. |
[35] | SUN J, HU X, PENG S, et al. Automatic classification of excitation location of snoring sounds[J]. J Clin Sleep Med, 2021, 17(5):1031-1038. doi:10.5664/jcsm.9094. |
[36] | FOX A W, MONOSON P K, MORGAN C D. Speech dysfunction of obstructive sleep apnea. A discriminant analysis of its descriptors[J]. Chest, 1989, 96(3):589-595. doi:10.1378/chest.96.3.589. |
[37] | GOLDSHTEIN E, TARASIUK A, ZIGEL Y. Automatic detection of obstructive sleep apnea using speech signals[J]. IEEE Trans Biomed Eng, 2011, 58(5):1373-1382. doi:10.1109/TBME.2010.2100096. |
[38] | MONOSON P K, FOX A W. Preliminary observation of speech disorder in obstructive and mixed sleep apnea[J]. Chest, 1987, 92(4):670-675. doi:10.1378/chest.92.4.670. |
[39] | FIZ J A, MORERA J, ABAD J, et al. Acoustic analysis of vowel emission in obstructive sleep apnea[J]. Chest, 1993, 104(4):1093-1096. doi:10.1378/chest.104.4.1093. |
[40] | POZO R F, MURILLO J L B, GOMEZ L H, et al. Assessment of severe apnoea through voice analysis,automatic speech, and speaker recognition techniques[J]. EURASIP Journal on Advances in Signal Processing, 2009, 2009(10):982531:1-982531:11. |
[41] | DING Y, WANG J, GAO J, et al. Severity evaluation of obstructive sleep apnea based on speech features[J]. Sleep Breath, 2021, 25(2):787-795. doi:10.1007/s11325-020-02168-0. |
[42] | UĞUR T K, YILMAZ D, YILDIZ M, et al. A preliminary study on OSA severity levels detection by evaluating speech signals nonlinearities with multi-class classification[J]. IEEE Access, 2023, 11:120997-121012. doi:10.1109/ACCESS.2023.3327902. |
[43] | YILMAZ D, YILDIZ M, UYAR TOPRAK Y, et al. Obstructive sleep apnea detection with nonlinear analysis of speech[J]. Biomedical Signal Processing and Control, 2023,84:104956. doi:10.1016/j.bspc.2023.104956. |
[44] | ZHANG K, CAO L, DING Y, et al. Obstructive sleep apnea detection using pre-trained speech representations[J]. 2023, 2023(8):1139-1143. doi:10.21437/Interspeech.2023-278. |
[45] | BOTELHO C, ABAD A, SCHULTZ T, et al. Visual speech for obstructive sleep apnea detection[J]. Interspeech, 2021, 2021:2516-2520. doi:10.21437/Interspeech.2021-1717. |
[46] | PANG K G, HSUNG T C, LAW A K W, et al. Optimal vowels measurements for obstructive sleep apnea detection using speech signals[J]. 2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP), 2020,2020:143-147. doi:10.1109/1CICSP50920.2020.9231972. |
[47] | SIMPLY R M, DAFNA E, ZIGEL Y. Diagnosis of obstructive sleep apnea using speech signals from awake subjects[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(2):251-260. doi:10.1109/JSTSP2019.2955019. |
[48] | PERERO-CODOSERO J M, ESPINOZA-CUADROS F, ANTON-MARTIN J, et al. Modeling obstructive sleep apnea voices using deep neural network embeddings and domain-adversarial training[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(2):240-250. doi:10.1109/JSTSP.2019.2957977. |
[49] | ESPINOZA-CUADROS F, FERNÁNDEZ-POZO R, TOLEDANO D T, et al. Reviewing the connection between speech and obstructive sleep apnea[J]. Biomed Eng Online, 2016,15:20. doi:10.1186/s12938-016-0138-5. |
[50] | BEN OR D, DAFNA E, TARASIUK A, et al. Obstructive sleep apnea severity estimation: Fusion of speech-based systems[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2016, 2016:3207-3210. doi:10.1109/EMBC.2016.7591411. |
[51] | SOLE-CASALS J, MUNTEANU C, MARTIN O C, et al. Detection of severe obstructive sleep apnea through voice analysis[J]. Applied Soft Computing, 2014, 23:346-354. doi:10.1016/j.asoc.2014.06.017. |
[52] | CAO S, ROSENZWEIG I, BILOTTA F, et al. Automatic detection of obstructive sleep apnea based on speech or snoring sounds: a narrative review[J]. J Thorac Dis, 2024, 16(4):2654-2667. doi:10.21037/jtd-24-310. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||