Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (10): 1090-1097.doi: 10.11958/20221976
• Experimental Research • Previous Articles Next Articles
Received:
2022-12-02
Revised:
2023-02-17
Published:
2023-10-15
Online:
2023-10-18
Contact:
∆E-mail:jueax516@163.com
WANG Ke, YE Hanlu. Effect and its mechanism of emodin on the ferroptosis of chondrocytes in rats with knee osteoarthritis[J]. Tianjin Medical Journal, 2023, 51(10): 1090-1097.
CLC Number:
基因名称 | 引物序列 |
---|---|
MMP-3 | 上游:5′-TTTGGCCGTCTCTTCCATCC-3′ |
下游:5′-GCATCGATCTTCTGGACGGT-3′ | |
MMP-13 | 上游:5′-TTCTGGTCTTCTGGCACACG-3′ |
下游:5′-TGGAGCTGCTTGTCCAGGT-3′ | |
COL2A1 | 上游:5′-GGTAAGTGGGGCAAGACTGTTA-3′ |
下游:5′-TGTTGTTTCTGGGTTCAGGTTT-3′ | |
PTGS2 | 上游:5′-ATGTTCGCATTCTTTGCCCAG-3′ |
下游:5′-TACACCTCTCCACCGATGAC-3′ | |
GAPDH | 上游:5′-ATGACAACTCCCTCAAGAT-3′ |
下游:5′-GATCCACAACGGATACATT-3′ |
Tab.1 Primer sequence
基因名称 | 引物序列 |
---|---|
MMP-3 | 上游:5′-TTTGGCCGTCTCTTCCATCC-3′ |
下游:5′-GCATCGATCTTCTGGACGGT-3′ | |
MMP-13 | 上游:5′-TTCTGGTCTTCTGGCACACG-3′ |
下游:5′-TGGAGCTGCTTGTCCAGGT-3′ | |
COL2A1 | 上游:5′-GGTAAGTGGGGCAAGACTGTTA-3′ |
下游:5′-TGTTGTTTCTGGGTTCAGGTTT-3′ | |
PTGS2 | 上游:5′-ATGTTCGCATTCTTTGCCCAG-3′ |
下游:5′-TACACCTCTCCACCGATGAC-3′ | |
GAPDH | 上游:5′-ATGACAACTCCCTCAAGAT-3′ |
下游:5′-GATCCACAACGGATACATT-3′ |
组别 | TNF-α/(ng/L) | NO/(μg/L) | PGE2/(μg/L) |
---|---|---|---|
Sham组 | 48.97±6.38 | 30.64±4.19 | 0.23±0.06 |
KOA组 | 117.54±8.67a | 58.27±5.63a | 0.52±0.08a |
EMO组 | 69.85±7.52b | 37.52±4.56b | 0.31±0.06b |
EMO+ML385组 | 102.71±8.35c | 51.38±5.32c | 0.46±0.07c |
F | 127.745** | 51.816** | 30.789** |
Tab.2 Comparison of serum TNF-α, NO and PGE2 levels between the four groups of rats
组别 | TNF-α/(ng/L) | NO/(μg/L) | PGE2/(μg/L) |
---|---|---|---|
Sham组 | 48.97±6.38 | 30.64±4.19 | 0.23±0.06 |
KOA组 | 117.54±8.67a | 58.27±5.63a | 0.52±0.08a |
EMO组 | 69.85±7.52b | 37.52±4.56b | 0.31±0.06b |
EMO+ML385组 | 102.71±8.35c | 51.38±5.32c | 0.46±0.07c |
F | 127.745** | 51.816** | 30.789** |
组别 | OARSI评分/分 | 凋亡率/% |
---|---|---|
Sham组 | 1.46±0.31 | 4.34±0.62 |
KOA组 | 6.50±0.69a | 21.17±3.74a |
EMO组 | 3.64±0.45b | 8.26±1.45b |
EMO+ML385组 | 5.78±0.52c | 17.58±2.67c |
F | 158.438** | 83.641** |
Tab.3 Comparison of OARSI score of knee joint cartilage and apoptosis rate of chondrocytes between the four groups of rats
组别 | OARSI评分/分 | 凋亡率/% |
---|---|---|
Sham组 | 1.46±0.31 | 4.34±0.62 |
KOA组 | 6.50±0.69a | 21.17±3.74a |
EMO组 | 3.64±0.45b | 8.26±1.45b |
EMO+ML385组 | 5.78±0.52c | 17.58±2.67c |
F | 158.438** | 83.641** |
组别 | MMP-3 | MMP-13 | COL2A1 | PTGS2 |
---|---|---|---|---|
Sham组 | 0.98±0.09 | 1.01±0.10 | 1.00±0.08 | 1.02±0.09 |
KOA组 | 3.52±0.13a | 2.73±0.11a | 0.39±0.06a | 3.68±0.12a |
EMO组 | 2.16±0.10b | 1.85±0.12b | 0.75±0.08b | 1.54±0.08b |
EMO+ML385组 | 3.04±0.12c | 2.30±0.13c | 0.48±0.07c | 3.07±0.11c |
F | 806.586** | 324.090** | 114.629** | 1 225.437** |
Tab.4 Comparison of MMP-3, MMP-13, COL2A1 and PTGS2 mRNA relative expression levels in knee joint cartilage between the four groups of rats
组别 | MMP-3 | MMP-13 | COL2A1 | PTGS2 |
---|---|---|---|---|
Sham组 | 0.98±0.09 | 1.01±0.10 | 1.00±0.08 | 1.02±0.09 |
KOA组 | 3.52±0.13a | 2.73±0.11a | 0.39±0.06a | 3.68±0.12a |
EMO组 | 2.16±0.10b | 1.85±0.12b | 0.75±0.08b | 1.54±0.08b |
EMO+ML385组 | 3.04±0.12c | 2.30±0.13c | 0.48±0.07c | 3.07±0.11c |
F | 806.586** | 324.090** | 114.629** | 1 225.437** |
组别 | MDA/(μmol/g) | ROS | GSH/(μmol/g) | Fe2+/(mg/g) |
---|---|---|---|---|
Sham组 | 3.41±0.48 | 1.00±0.00 | 7.98±0.75 | 0.26±0.06 |
KOA组 | 8.96±0.65a | 3.68±0.37a | 3.61±0.49a | 0.64±0.08a |
EMO组 | 5.37±0.54b | 1.95±0.26b | 6.37±0.64b | 0.41±0.07b |
EMO+ ML385组 | 8.02±0.66c | 3.07±0.31c | 4.29±0.56c | 0.58±0.06c |
F | 148.183** | 150.714** | 83.386** | 51.128** |
Tab.5 Comparison of MDA, ROS, GSH and Fe2+ levels in knee joint cartilage of rats between the four groups
组别 | MDA/(μmol/g) | ROS | GSH/(μmol/g) | Fe2+/(mg/g) |
---|---|---|---|---|
Sham组 | 3.41±0.48 | 1.00±0.00 | 7.98±0.75 | 0.26±0.06 |
KOA组 | 8.96±0.65a | 3.68±0.37a | 3.61±0.49a | 0.64±0.08a |
EMO组 | 5.37±0.54b | 1.95±0.26b | 6.37±0.64b | 0.41±0.07b |
EMO+ ML385组 | 8.02±0.66c | 3.07±0.31c | 4.29±0.56c | 0.58±0.06c |
F | 148.183** | 150.714** | 83.386** | 51.128** |
组别 | GPX4 | ACSL4 |
---|---|---|
Sham组 | 83.21±7.54 | 28.64±6.38 |
KOA组 | 42.16±6.89a | 69.31±8.14a |
EMO组 | 71.39±8.43b | 40.52±7.03b |
EMO+ML385组 | 50.98±7.85c | 58.26±7.69c |
F | 47.394** | 48.728** |
Tab.6 Comparison of the proportion of GPX4 and ACSL4 positive cells in knee joint cartilage between the four groups of rats
组别 | GPX4 | ACSL4 |
---|---|---|
Sham组 | 83.21±7.54 | 28.64±6.38 |
KOA组 | 42.16±6.89a | 69.31±8.14a |
EMO组 | 71.39±8.43b | 40.52±7.03b |
EMO+ML385组 | 50.98±7.85c | 58.26±7.69c |
F | 47.394** | 48.728** |
组别 | MMP-3 | MMP-13 | COL2A1 | PTGS2 |
---|---|---|---|---|
Sham组 | 0.23±0.04 | 0.29±0.05 | 0.79±0.05 | 0.19±0.04 |
KOA组 | 0.85±0.06a | 0.93±0.06a | 0.38±0.04a | 0.72±0.05a |
EMO组 | 0.34±0.05b | 0.42±0.05b | 0.71±0.05b | 0.28±0.04b |
EMO+ML385组 | 0.72±0.06c | 0.84±0.06c | 0.46±0.04c | 0.53±0.06c |
F | 249.676** | 256.525** | 149.984** | 199.799** |
Tab.7 Comparison of the protein relative expression levels of MMP-3, MMP-13, COL2A1 and PTGS2 in knee joint cartilage between the four groups of rats
组别 | MMP-3 | MMP-13 | COL2A1 | PTGS2 |
---|---|---|---|---|
Sham组 | 0.23±0.04 | 0.29±0.05 | 0.79±0.05 | 0.19±0.04 |
KOA组 | 0.85±0.06a | 0.93±0.06a | 0.38±0.04a | 0.72±0.05a |
EMO组 | 0.34±0.05b | 0.42±0.05b | 0.71±0.05b | 0.28±0.04b |
EMO+ML385组 | 0.72±0.06c | 0.84±0.06c | 0.46±0.04c | 0.53±0.06c |
F | 249.676** | 256.525** | 149.984** | 199.799** |
组别 | GPX4 | ACSL4 | HO-1 | 胞质Nrf2 | 胞核Nrf2 |
---|---|---|---|---|---|
Sham组 | 0.82±0.05 | 0.12±0.03 | 0.46±0.04 | 0.89±0.05 | 0.17±0.03 |
KOA组 | 0.36±0.04a | 0.39±0.05a | 0.58±0.05a | 0.74±0.07a | 0.29±0.05a |
EMO组 | 0.72±0.06b | 0.20±0.04b | 1.13±0.06b | 0.23±0.05b | 0.94±0.06b |
EMO+ML385组 | 0.43±0.05c | 0.31±0.05c | 0.71±0.05c | 0.56±0.06c | 0.49±0.05c |
F | 154.850** | 60.444** | 267.085** | 191.289** | 385.881** |
Tab.8 Comparison of the protein relative expression levels of GPX4, ACSL4, Nrf2 and HO-1 in knee joint cartilage of rats between the four groups
组别 | GPX4 | ACSL4 | HO-1 | 胞质Nrf2 | 胞核Nrf2 |
---|---|---|---|---|---|
Sham组 | 0.82±0.05 | 0.12±0.03 | 0.46±0.04 | 0.89±0.05 | 0.17±0.03 |
KOA组 | 0.36±0.04a | 0.39±0.05a | 0.58±0.05a | 0.74±0.07a | 0.29±0.05a |
EMO组 | 0.72±0.06b | 0.20±0.04b | 1.13±0.06b | 0.23±0.05b | 0.94±0.06b |
EMO+ML385组 | 0.43±0.05c | 0.31±0.05c | 0.71±0.05c | 0.56±0.06c | 0.49±0.05c |
F | 154.850** | 60.444** | 267.085** | 191.289** | 385.881** |
[1] | KATZ J N, ARANT K R, LOESER R F. Diagnosis and treatment of hip and knee osteoarthritis:A review[J]. JAMA, 2021, 325(6):568-578. doi:10.1001/jama.2020.22171. |
[2] | 李远栋, 杨琨, 王平, 等. 中药基于Wnt/β-catenin信号通路治疗膝骨性关节炎的研究进展[J]. 中草药, 2021, 52(21):6717-6723. |
LI Y D, YANG K, WANG P, et al. Research progress on mechanism of traditional Chinese medicine against knee osteoarthritis based on Wnt/β-catenin signaling pathway[J]. Chin Tradit Herbal Drugs, 2021, 52(21):6717-6723. doi:10.7501/j.issn.0253-2670.2021.21.030. | |
[3] | HU H, SONG X, LI Y, et al. Emodin protects knee joint cartilage in rats through anti-matrix degradation pathway:An in vitro and in vivo study[J]. Life Sci, 2021, 269:119001. doi:10.1016/j.lfs.2020.119001. |
[4] | 海云翔, 巩彦龙, 宋敏, 等. 细胞程序性死亡在骨质疏松症中的研究进展[J]. 中国骨质疏松杂志, 2023, 29(1):89-94. |
HAI Y X, GONG Y L, SONG M, et al. Effect of the programmed cell death of osteocyte on osteoporosis[J]. Chin J Osteoporos, 2023, 29(1):89-94. doi:10.3969/j.issn.1006-7108.2023.01.017. | |
[5] | GUO Z, LIN J, SUN K, et al. Deferoxamine alleviates osteoarthritis by inhibiting chondrocyte ferroptosis and activating the Nrf2 pathway[J]. Front Pharmacol, 2022, 13:791376. doi:10.3389/fphar.2022.791376. |
[6] | 张昊悦, 赵蓓, 王业皇, 等. 大黄素通过调节Nrf2/HO-和MAPKs抑制炎症和氧化应激机制研究[J]. 中国免疫学杂志, 2021, 37(9):1063-1068. |
ZHANG H Y, ZHAO B, WANG Y H, et al. Emodin inhibits inflammation and oxidative stress by regulating Nrf2/HO-1 and MAPKs[J]. Chin J Immunol, 2021, 37(9):1063-1068. doi:10.3969/j.issn.1000-484X.2021.09.008. | |
[7] | 吴强, 郑倩华, 蒋一璐, 等. 膝骨性关节炎动物模型选择与制备的比较[J]. 中国比较医学杂志, 2019, 29(5):125-130. |
WU Q, ZHENG Q H, JIANG Y L, et al. Comparison of selection and preparation of animal models of knee osteoarthritis[J]. Chin J Comp Med, 2019, 29(5):125-130. doi:10.3969/j.issn.1671-7856.2019.05.020. | |
[8] | GAO Z, SUI J, FAN R, et al. Emodin protects against acute pancreatitis-associated lung injury by inhibiting NLPR3 inflammasome activation via Nrf2/HO-1 signaling[J]. Drug Des Devel Ther, 2020, 14:1971-1982. doi:10.2147/DDDT.S247103. |
[9] | BANNURU R R, OSANI M C, VAYSBROT E E, et al. OARSI guidelines for the non-surgical management of knee,hip,and polyarticular osteoarthritis[J]. Osteoarthritis Cartilage, 2019, 27(11):1578-1589. doi:10.1016/j.joca.2019.06.011. |
[10] | JANG S, LEE K, JU J H. Recent updates of diagnosis,pathophysiology,and treatment on osteoarthritis of the knee[J]. Int J Mol Sci, 2021, 22(5):2619. doi:10.3390/ijms22052619. |
[11] | DING Q H, YE C Y, CHEN E M, et al. Emodin ameliorates cartilage degradation in osteoarthritis by inhibiting NF-κB and Wnt/β-catenin signaling in-vitro and in-vivo[J]. Int Immunopharmacol, 2018, 61:222-230. doi:10.1016/j.intimp.2018.05.026. |
[12] | LIU Z, LANG Y, LI L, et al. Effect of emodin on chondrocyte viability in an in vitro model of osteoarthritis[J]. Exp Ther Med, 2018, 16(6):5384-5389. doi:10.3892/etm.2018.6877. |
[13] | LIAO H, ZHANG Z, LIU Z, et al. Inhibited microRNA-218-5p attenuates synovial inflammation and cartilage injury in rats with knee osteoarthritis by promoting sclerostin[J]. Life Sci, 2021, 267:118893. doi:10.1016/j.lfs.2020.118893. |
[14] | GUAN T, DING L G, LU B Y, et al. Combined administration of curcumin and chondroitin sulfate alleviates cartilage injury and inflammation via NF-κB pathway in knee osteoarthritis rats[J]. Front Pharmacol, 2022, 13:882304. doi:10.3389/fphar.2022.882304. |
[15] | YAO X, SUN K, YU S, et al. Chondrocyte ferroptosis contribute to the progression of osteoarthritis[J]. J Orthop Translat, 2020, 27:33-43. doi:10.1016/j.jot.2020.09.006. |
[16] | HU Z, YIN Y, JIANG J, et al. Exosomal miR-142-3p secreted by hepatitis B virus (HBV)-hepatocellular carcinoma (HCC) cells promotes ferroptosis of M1-type macrophages through SLC3A2 and the mechanism of HCC progression[J]. J Gastrointest Oncol, 2022, 13(2):754-767. doi:10.21037/jgo-21-916. |
[17] | 李哲, 袁长深, 官岩兵, 等. 骨关节炎中铁死亡的生物信息学分析与实验验证[J]. 中国组织工程研究, 2023, 27(17):2637-2643. |
LI Z, YUAN C S, GUAN Y B, et al. Bioinformatic analysis and experimental validation of ferroptosis in osteoarthritis[J]. Chin J Tissue Engin Res, 2023, 27(17):2637-2643. doi:org/10.12307/2023.437. | |
[18] | WANG Z, EFFERTH T, HUA X, et al. Medicinal plants and their secondary metabolites in alleviating knee osteoarthritis:A systematic review[J]. Phytomedicine, 2022, 105:154347. doi:10.1016/j.phymed.2022.154347. |
[19] | ZHANG J, LIU L, LI F, et al. Treatment with catalpol protects against cisplatin-induced renal injury through Nrf2 and NF-κB signaling pathways[J]. Exp Ther Med, 2020, 20(4):3025-3032. doi:10.3892/etm.2020.9077. |
[20] | BUSA P, LEE S O, HUANG N, et al. Carnosine alleviates knee osteoarthritis and promotes synoviocyte protection via activating the Nrf2/HO-1 signaling pathway: An in-vivo and in-vitro study[J]. Antioxidants (Basel), 2022, 11(6):1209. doi:10.3390/antiox11061209. |
[21] | MA H, WANG X, ZHANG W, et al. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis[J]. Oxid Med Cell Longev, 2020, 2020:9067610. doi:10.1155/2020/9067610. |
[22] | SHANG L, LIU Y, LI J, et al. Emodin protects sepsis associated damage to the intestinal mucosal barrier through the VDR/Nrf2/HO-1 pathway[J]. Front Pharmacol, 2021, 12:724511. doi:10.3389/fphar.2021.724511. |
[23] | WU H, LUAN Y, WANG H, et al. Selenium inhibits ferroptosis and ameliorates autistic-like behaviors of BTBR mice by regulating the Nrf2/GPx4 pathway[J]. Brain Res Bull, 2022, 183:38-48. doi:10.1016/j.brainresbull.2022.02.018. |
[1] | ZHONG Yumei, ZHOU Haiyan, ZHANG Min. Research progress on the mechanism of ASIC1a-mediated chondrocyte injury in rheumatoid arthritis [J]. Tianjin Medical Journal, 2024, 52(9): 1004-1008. |
[2] | ZHANG Chunhong, HUANG Hongchao, LIU Yue, DU Lilong, XU Haiwei, LI Ning, LI Yongjin. Identification of key ferroptosis genes in paraspinal muscle degeneration based on RNA sequencing and bioinformatics analysis [J]. Tianjin Medical Journal, 2024, 52(9): 991-995. |
[3] | LIU Bin, YANG Long, LI Wenli, SHAO Ningning, DONG Jinrui. Mechanism of microglia ferroptosis in smoke inhalation-induced brain injury [J]. Tianjin Medical Journal, 2024, 52(8): 791-797. |
[4] | WANG Xinshuang, AN Yajuan, GUAN Xiuju, LI Jiao, LIU Yue, WEI Liping, QI Xin. Study of magnesium isoglycyrrhizinate in ameliorating cisplatin induced myocardial injury in rats [J]. Tianjin Medical Journal, 2024, 52(8): 809-814. |
[5] | YUAN Man, FENG Zihan, XIE Min, WANG Bojun. Mechanism of emodin modulating pain behavior in mouse model of osteoarthritis [J]. Tianjin Medical Journal, 2024, 52(6): 572-577. |
[6] | WANG Ke, YE Hanlu. Impacts of cryptotanshinone on autophagy and apoptosis of chondrocytes in rabbit model of knee osteoarthritis by regulating HIF-1α/BNIP3 signaling pathway [J]. Tianjin Medical Journal, 2024, 52(4): 372-378. |
[7] | HUANG Xiaolei, GE Tingting, ZHAO Junsong, NI Zhihua. Study on the role of ginsenoside Rg1 in IL-6-induced neuronal ferroptosis in rats [J]. Tianjin Medical Journal, 2024, 52(11): 1137-1140. |
[8] | LIU Guoqi, LI Chengcheng, LIU Shengju, ZHU Liying. Emodin regulates histone acetylation to promote pyroptosis and apoptosis of HpG2 hepatoma cells [J]. Tianjin Medical Journal, 2024, 52(1): 56-60. |
[9] | LI Yanping, WANG Xietao, SHI Libin, LIU Qiong. Influence of resveratrol on H2O2-induced ferroptosis in alveolar epithelial cells by regulating the Nrf2-GPX4 pathway [J]. Tianjin Medical Journal, 2023, 51(6): 568-572. |
[10] | HU Yingshan, WANG Jingjing, GAO Hongmei. Research progress in the pathogenesis of sepsis-related intestinal dysfunction [J]. Tianjin Medical Journal, 2023, 51(3): 333-336. |
[11] | MAO Quanxi, LI Zuoxiao. Neuroprotective mechanism of edaravone dexborneol in rats with cerebral hemorrhage through ferroptosis-lipid peroxidation pathway [J]. Tianjin Medical Journal, 2023, 51(11): 1199-1204. |
[12] | XIONG Xicheng, WANG Yiping, WANG Gang, ZHANG Tian, BAO Yali, Di na·AINIWAER, SUN Zhan. Ferrostatin-1 delay D-gal induced cardiomyocyte senescence by inhibiting ferroptosis [J]. Tianjin Medical Journal, 2023, 51(1): 19-23. |
[13] | ZHANG Jing, SUN Hui, ZHU Lijun, FENG Ziren, DU Lin, MENG Aiguo△. Relationship between miR-27a expression and ferroptosis in the early stage of ischemic stroke of rats [J]. Tianjin Medical Journal, 2022, 50(6): 595-600. |
[14] | . Tetrahydroxystilbene glucoside and emodin improves the hippocampal neuronal apoptosis in mice induced by high glucose [J]. Tianjin Medical Journal, 2022, 50(6): 561-565. |
[15] | ZHANG Xiao-hong, WANG Hong-min, LI Yang, HU Chao-yang, LI Feng-zhi, CHANG Rui, HUANG Han, JIN Li . Effects of emodin on oxidative stress damage and miR-34a/SIRT1 axis in rat model of streptococcus pneumoniae pneumonia [J]. Tianjin Medical Journal, 2021, 49(6): 588-592. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||