Tianjin Medical Journal ›› 2022, Vol. 50 ›› Issue (10): 1103-1109.doi: 10.11958/20220509
• Review • Previous Articles Next Articles
WANG Yuliang1(), LONG Yiyin1, CHEN Xiaobo2
Received:
2022-04-06
Revised:
2022-05-08
Published:
2022-10-15
Online:
2022-10-20
WANG Yuliang, LONG Yiyin, CHEN Xiaobo. Genetic and pathogenic characteristics of SARS-CoV-2 variants[J]. Tianjin Medical Journal, 2022, 50(10): 1103-1109.
CLC Number:
VOC | 首次 报告 | S蛋白基因突变位点 | |||||||
---|---|---|---|---|---|---|---|---|---|
S1 | S2 | ||||||||
受体结合区域(RBD) | N-端区域(NTD) | 其他 | |||||||
B.1.1.7(Alpha) | 2020.09英国 | N501Y | Δ69~70、Δ144~145 | A570D、D614G、P681H | T716l、S982A、D1118H | ||||
B.1.351(Beta) | 2020.05南非 | K417N、E484K、N501Y | D80A、D215G、Δ242~244 | D614G | A701V | ||||
P.1(Gamma) | 2020.11巴西 | K417T、E484K、N501Y | L18F、T20N、P26S、 D138Y、R190S | D614G、H655Y | T1027l、V1176F | ||||
B.1.617.2(Delta) | 2020.10印度 | L452R、T478K | T19R、E156G、Δ157~158 | D614G、P681R | D950N | ||||
B.1.1.529 (Omicron) | 2021.11 博茨瓦纳 | G339D、S371L、S373P、S375F、K417N、 N440K、G446S、S477N、T478K、E484A、 Q493R、G496S、Q498R、N501Y、Y505H | A67V、Δ69~70、T95I、 G142D、Δ143-145、 Δ211、L212I、ins214EPE | T547K、D614G、H655Y、 N679K、P681H | N764K、D796Y、 N856K、Q954H、 N969K、L981F | ||||
VOC | 影响 | ||||||||
传播力 | 致病性 | 免疫逃逸能力 | |||||||
B.1.1.7 (Alpha) | 比原始毒株高43%~82% | 致死率比原始毒株高64% | 恢复期患者的血清中和活性约降低至原来的1/4;疫苗接种者的 血清中和活性约降低至原来的1/3 | ||||||
B.1.351 (Beta) | 比原始毒株高约50% | 院内致死风险比已报道毒 株高31% | 恢复期患者的血浆中和活性降低至原来的1/34~1/12;疫苗接种 者的血清中和活性降低至原来的1/9.5~1/4.4 | ||||||
P.1 (Gamma) | 是原始毒株的1.7~2.4倍 | 对20~49岁女性的致死率 升高 | 恢复期患者的血浆中和活性降低至原来的1/14~1/7.5;疫苗接种 者的血清中和活性降低至原来的1/3.8~1/3.2 | ||||||
B.1.617.2 (Delta) | 比原始毒株高97%,比Alpha 变异株高40%~50% | 危重症率高于原始毒株;致 死率比原始毒株高133% | 恢复期患者及疫苗接种者的血清中和活性均有所降低 | ||||||
B.1.1.529 (Omicron) | 为Delta变异株的3~6倍 | 相对较低 | 恢复期患者血清的中和敏感性降低,但仍有一定的保护作用;既往感 染过其他变异株且未接种疫苗患者的血清不能中和Omicron变种 |
Tab. 1 Genetic characteristics of SARS-CoV-2-VOC and their impacts
VOC | 首次 报告 | S蛋白基因突变位点 | |||||||
---|---|---|---|---|---|---|---|---|---|
S1 | S2 | ||||||||
受体结合区域(RBD) | N-端区域(NTD) | 其他 | |||||||
B.1.1.7(Alpha) | 2020.09英国 | N501Y | Δ69~70、Δ144~145 | A570D、D614G、P681H | T716l、S982A、D1118H | ||||
B.1.351(Beta) | 2020.05南非 | K417N、E484K、N501Y | D80A、D215G、Δ242~244 | D614G | A701V | ||||
P.1(Gamma) | 2020.11巴西 | K417T、E484K、N501Y | L18F、T20N、P26S、 D138Y、R190S | D614G、H655Y | T1027l、V1176F | ||||
B.1.617.2(Delta) | 2020.10印度 | L452R、T478K | T19R、E156G、Δ157~158 | D614G、P681R | D950N | ||||
B.1.1.529 (Omicron) | 2021.11 博茨瓦纳 | G339D、S371L、S373P、S375F、K417N、 N440K、G446S、S477N、T478K、E484A、 Q493R、G496S、Q498R、N501Y、Y505H | A67V、Δ69~70、T95I、 G142D、Δ143-145、 Δ211、L212I、ins214EPE | T547K、D614G、H655Y、 N679K、P681H | N764K、D796Y、 N856K、Q954H、 N969K、L981F | ||||
VOC | 影响 | ||||||||
传播力 | 致病性 | 免疫逃逸能力 | |||||||
B.1.1.7 (Alpha) | 比原始毒株高43%~82% | 致死率比原始毒株高64% | 恢复期患者的血清中和活性约降低至原来的1/4;疫苗接种者的 血清中和活性约降低至原来的1/3 | ||||||
B.1.351 (Beta) | 比原始毒株高约50% | 院内致死风险比已报道毒 株高31% | 恢复期患者的血浆中和活性降低至原来的1/34~1/12;疫苗接种 者的血清中和活性降低至原来的1/9.5~1/4.4 | ||||||
P.1 (Gamma) | 是原始毒株的1.7~2.4倍 | 对20~49岁女性的致死率 升高 | 恢复期患者的血浆中和活性降低至原来的1/14~1/7.5;疫苗接种 者的血清中和活性降低至原来的1/3.8~1/3.2 | ||||||
B.1.617.2 (Delta) | 比原始毒株高97%,比Alpha 变异株高40%~50% | 危重症率高于原始毒株;致 死率比原始毒株高133% | 恢复期患者及疫苗接种者的血清中和活性均有所降低 | ||||||
B.1.1.529 (Omicron) | 为Delta变异株的3~6倍 | 相对较低 | 恢复期患者血清的中和敏感性降低,但仍有一定的保护作用;既往感 染过其他变异株且未接种疫苗患者的血清不能中和Omicron变种 |
[1] | KOELLE K, MARTIN M A, ANTIA R, et al. The changing epidemiology of SARS-CoV-2[J]. Science, 2022, 375(6585):1116-1121. doi: 10.1126/science.abm4915. |
[2] | World Health Organization. COVID-19 Weekly Epidemiological Update[EB/OL]. (2022-05-03)[2022-05-03]. https://covid19.who.int/. |
[3] | KARIM S S A, KARIM Q A. Omicron SARS-CoV-2 variant:a new chapter in the COVID-19 pandemic[J]. Lancet, 2021, 398(10317):2126-2128. doi: 10.1016/S0140-6736(21)02758-6. |
[4] | MOGHADDAR M, RADMAN R, MACREADIE I. Severity,pathogenicity and transmissibility of delta and lambda variants of SARS-CoV-2,toxicity of spike protein and possibilities for future prevention of COVID-19[J]. Microorganisms, 2021, 9(10):2167. doi: 10.3390/microorganisms9102167. |
[5] | KE Z, OTON J, QU K, et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions[J]. Nature, 2020, 588(7838):498-502. doi: 10.1038/s41586-020-2665-2. |
[6] | ESSALMANI R, JAIN J, SUSAN-RESIGA D, et al. Distinctive roles of furin and TMPRSS2 in SARS-CoV-2 infectivity[J]. J Virol, 2022, 96(8):e0012822. doi: 10.1128/jvi.00128-22. |
[7] | CHOI J Y, SMITH D M. SARS-CoV-2 variants of concern[J]. Yonsei Med J, 2021, 62(11):961-968. doi: 10.3349/ymj.2021.62.11.961. |
[8] | CHAVDA V P, PATEL A B, VAGHASIYA D D. SARS-CoV-2 variants and vulnerability at the global level[J]. J Med Virol, 2022, 94(7):2986-3005. doi: 10.1002/jmv.27717. |
[9] | THAKUR S, SASI S, PILLAI S G, et al. SARS-CoV-2 mutations and their impact on diagnostics,therapeutics and vaccines[J]. Front Med (Lausanne), 2022, 9:815389. doi: 10.3389/fmed.2022.815389. |
[10] | TATSI E B, FILIPPATOS F, MICHOS A. SARS-CoV-2 variants and effectiveness of vaccines:a review of current evidence[J]. Epidemiol Infect, 2021, 149:e237. doi: 10.1017/S0950268821002430. |
[11] | UK Health Security Agency. Deltacron:a new variant that combines Omicron and Delta discovered in Cyprus *4 UPDATES*[EB/OL]. (2022-01-08)[2022-05-03]. https://www.coronaheadsup.com/coronavirus/deltacron-a-new-variant-that-combines-omicron-and-delta-discovered-in-cyprus/. |
[12] | KREIER F. Deltacron:the story of the variant that wasn't[J]. Nature, 2022, 602(7895):19. doi: 10.1038/d41586-022-00149-9. |
[13] | VAUGHAN A. Omicron emerges[J]. New Sci, 2021, 252(3363):7. doi: 10.1016/S0262-4079(21)02140-0. |
[14] | 中国青年网. 天津从入境人员中检出奥密克戎变异株为中国内地首例[EB/OL]. (2021-12-13)[2022-04-03]. |
China Youth Net. Tianjin detected the Omicron variant of COVID-19 in a person who traveled from overseas, first in Chinese mainland[EB/OL]. (2021-12-13)[2022-04-03]. http://news.youth.cn/jsxw/202112/t20211213_13350683.htm. | |
[15] | KHANDIA R, SINGHAL S, ALQAHTANI T, et al. Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant,salient features,high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic[J]. Environ Res, 2022, 209:112816. doi: 10.1016/j.envres.2022.112816. |
[16] | NYBERG T, FERGUSON N M, NASH S G, et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 Omicron (B.1.1.529) and delta (B.1.617.2) variants in England:Acohort study[J]. Lancet, 2022, 399(10332):1303-1312. doi: 10.1016/S0140-6736(22)00462-7. |
[17] | JOHN E L Y. Brit battled Covid for a record 505 days before dying in the longest known case of infection, scientists reveal[EB/OL]. (2022-04-22)[2021-05-05]. https://www.dailymail.co.uk/health/article-10738903/Worlds-longest-known-Covid-infection-went-505-DAYS-scientists-reveal.html. |
[18] | GHOSH N, NANDI S, SAHA I. A review on evolution of emerging SARS-CoV-2 variants based on spike glycoprotein[J]. Int Immunopharmacol, 2022, 105:108565. doi: 10.1016/j.intimp.2022.108565. |
[19] | BHATTACHARYA M, SHARMA A R, DHAMA K, et al. Omicron variant (B.1.1.529) of SARS-CoV-2:understanding mutations in the genome,S-glycoprotein,and antibody-binding regions[J]. Geroscience, 2022, 44(2):619-637. doi: 10.1007/s11357-022-00532-4. |
[20] | OU J, LAN W, WU X, et al. Tracking SARS-CoV-2 Omicron diverse spike gene mutations identifies multiple inter-variant recombination events[J]. Signal Transduct Target Ther, 2022, 7(1):138. doi: 10.1038/s41392-022-00992-2. |
[21] | CAMERONI E, BOWEN J E, ROSEN L E, et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift[J]. Nature, 2022, 602(7898):664-670. doi: 10.1038/s41586-021-04386-2. |
[22] | MENNI C, VALDES A M, POLIDORI L, et al. Symptom prevalence,duration,and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of Omicron and Delta variant dominance:Aprospective observational study from the ZOE COVID Study[J]. Lancet, 2022, 399(10335):1618-1624. doi: 10.1016/S0140-6736(22)00327-0. |
[23] | MASLO C, FRIEDLAND R, TOUBKIN M, et al. Characteristics and outcomes of hospitalized patients in South Africa during the COVID-19 omicron wave compared with previous waves[J]. JAMA, 2022, 327(6):583-584. doi: 10.1001/jama.2021.24868. |
[24] | 王玉亮, 王峰, 耿洁. 细胞因子与细胞因子风暴[J]. 天津医药, 2020, 48(6):494-499. |
WANG Y L, WANG F, GENG J. Cytokine and cytokine storm[J]. Tianjin Med J, 2020, 48(6):494-499. doi: 10.11958/20200323. | |
[25] | UK Health Security Agency. UK:XE may have a growth rate -10% greater than Omicron BA.2 *1 UPDATE*[EB/OL]. (2022-03-26)[2022-04-05]. https://www.coronaheadsup.com/science/.variants/recombinants/uk-deltacron-xe-may-have-a-growth-rate-10-greater-than-omicron-ba-2/. |
[26] | Yonhap News Agency. (4th LD) S. Korea's new COVID-19 cases bounce back to more than 200,000[EB/OL].(2022-04-12)[2022-04-26]. https://en.yna.co.kr/view/AEN20220412001354320?section=search. |
[27] | WANG Y, CHEN X, WANG F, et al. Value of anal swabs for SARS-COV-2 detection:a literature review[J]. Int J Med Sci, 2021, 18(11):2389-2393. doi: 10.7150/ijms.59382. |
[28] | YOO H M, KIM I H, KIM S. Nucleic acid testing of SARS-CoV-2[J]. Int J Mol Sci, 2021, 22(11): 6150. doi: 10.3390/ijms22116150. |
[29] | BRÜMMER L E, KATZENSCHLAGER S, GAEDDERT M, et al. Accuracy of novel antigen rapid diagnostics for SARS-CoV-2:A living systematic review and meta-analysis[J]. PLoS Med, 2021, 18(8):e1003735. doi: 10.1371/journal.pmed.1003735. |
[30] | GUEVARA-HOYER K, FUENTES-ANTRÁS J, DE LA FUENTE-MUÑOZ E, et al. Serological tests in the detection of SARS-CoV-2 antibodies[J]. Diagnostics (Basel), 2021, 11(4):678. doi: 10.3390/diagnostics11040678. |
[31] | Update to living WHO guideline on drugs for covid-19[J]. BMJ, 2022, 377:o1005. doi: 10.1136/bmj.o1005. |
[1] | GU Songtao, JIA Wei, LI Yuechuan, ZHANG Dongrui, ZHANG Yating, GAO Shulian, LI Na. Clinical characteristics of COVID-19 complicated with pulmonary thromboembolism [J]. Tianjin Medical Journal, 2023, 51(8): 873-877. |
[2] | LI Xiyuan, ZHU Zhixin, ZHAO Hailong . Recent advances in the mechanisms of drug resistance and treatment of BRAF-mutant melanoma [J]. Tianjin Medical Journal, 2022, 50(2): 214-219. |
[3] | FENG Liting, WANG Xing, LI Li, WU Qi. Clinical characteristics of persons infected with imported SARS-CoV-2 Omicron variant in Tianjin [J]. Tianjin Medical Journal, 2022, 50(10): 1083-1087. |
[4] | FU Ya'nan, ZENG Feng, RAO Jingjing, HUANG Yanping, LIU Zhixin, LIU Long. The research progress and function of SARS-CoV-2 accessory protein ORF8 [J]. Tianjin Medical Journal, 2022, 50(10): 1110-1114. |
[5] | Medical Genetics Branch of Tianjin Medical Association, Genetic Counseling Branch of Tianjin Medical Association. Recommendations on the clinical significance grading of genetic variation in clinical gene testing [J]. Tianjin Medical Journal, 2021, 49(6): 561-569. |
[6] | GUO Jing, LI Li, WU Qian, LI Hong-wei, SHI Li-xia, WU Qi. The effect of the systemic immune-inflammation index on conversion time of virus nucleic acid turning negative in COVID-19 patients [J]. Tianjin Medical Journal, 2021, 49(11): 1188-1192. |
[7] |
ZHAO Lei , XUE Jian , WANG Yu-ling△, DAI Er-hei , XU Zun-gui , LI Ya-nan , DUN Zi-qian , GAO Hui-xia , RONG Yan-xiao , CHEN Can.
The clinical feature and imaging analysis of patients with new coronavirus infection in Shijiazhuang
[J]. Tianjin Medical Journal, 2020, 48(7): 588-591.
|
[8] | WANG Xiao-wu, ZHU Yi-lang, LI Tuan-tuan, GAO Yong△. Evaluation of SARS-COV-2 nucleic acid in convalescent anal swabs of patients with coronavirus disease 2019 [J]. Tianjin Medical Journal, 2020, 48(7): 592-595. |
[9] | ZHU Yi-lang , XU Yuan-hong , WANG Xiao-wu , LI Mei , GAO Yong△. Changes of blood routine examination and lymphocyte subsets in patients with COVID-19 [J]. Tianjin Medical Journal, 2020, 48(7): 596-598. |
[10] | YU Hong-zhi , SHAO Hong-xia , XING Zhi-heng , QIN Zhong-hua , FU Sha-sha , HU Song , WU Qi△. Analysis of clinical characteristics of patients with COVID-19 in Tianjin [J]. Tianjin Medical Journal, 2020, 48(7): 577-582. |
[11] | BAI Xue, HE Ping△. Screening of K-RAS mutation related lincRNA in colorectal carcinoma based on TCGA database [J]. Tianjin Medical Journal, 2020, 48(7): 616-620. |
[12] | YU Hong-zhi, XU Lei, CONG Hong-liang, WU Qi△. Discussion on the treatment of COVID-19 in Tianjin [J]. Tianjin Medical Journal, 2020, 48(6): 479-482. |
[13] | DU Xiao-yan, MA Hui△. A case report of a patient highly suspected novel coronavirus pneumonia with six times of negative nucleic acid test [J]. Tianjin Medical Journal, 2020, 48(6): 490-493. |
[14] | WANG Yu-liang△, WANG Feng, GENG Jie. Cytokine and cytokine storm #br# [J]. Tianjin Medical Journal, 2020, 48(6): 494-499. |
[15] | MU Juan, LYU Hai-rong, LI Jing-yi, JIANG Yan-yu, ZHANG Rui, MENG Juan-xia, YUAN Ting , DENG Qi. CD22 CAR-T salvage therapy for a refractory acute B lymphocytic leukemia patient with TP53#br# positive mutation and short-term recurrence after remission from CD19 CAR-T therapy #br# [J]. Tianjin Medical Journal, 2020, 48(4): 308-312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||