Tianjin Medical Journal ›› 2022, Vol. 50 ›› Issue (10): 1110-1114.doi: 10.11958/20220531
• Review • Previous Articles Next Articles
FU Ya'nan(), ZENG Feng, RAO Jingjing, HUANG Yanping, LIU Zhixin, LIU Long(
)
Received:
2022-04-12
Revised:
2022-05-27
Published:
2022-10-15
Online:
2022-10-20
Contact:
LIU Long
E-mail:3064909472@qq.com;liulong2015@outlook.com
FU Ya'nan, ZENG Feng, RAO Jingjing, HUANG Yanping, LIU Zhixin, LIU Long. The research progress and function of SARS-CoV-2 accessory protein ORF8[J]. Tianjin Medical Journal, 2022, 50(10): 1110-1114.
CLC Number:
[1] | World Health Organization. WHO Coronavirus(COVID-19)Dashboard[EB/OL]. (2022-05-25)[2022-05-25]. https://covid19.who.int. |
[2] | GORDON D E, HIATT J, BOUHADDOU M, et al. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms[J]. Science, 2020, 370(6521):eabe9403. doi: 10.1126/science.abe9403. |
[3] | VALCARCEL A, BENSUSSEN A, ALVAREZ-BUYLLA E R, et al. Structural analysis of SARS-CoV-2 ORF8 protein:pathogenic and therapeutic implications[J]. Front Genet, 2021, 12:693227. doi: 10.3389/fgene.2021.693227. |
[4] | FLOWER T G, BUFFALO C Z, HOOY R M, et al. Structure of SARS-CoV-2 ORF8,a rapidly evolving immune evasion protein[J]. Proc Natl Acad Sci U S A, 2021, 118(2):e2021785118. doi: 10.1073/pnas.2021785118. |
[5] | TAN Y, SCHNEIDER T, LEONG M, et al. Novel immunoglobulin domain proteins provide insights into evolution and pathogenesis of SARS-CoV-2-related viruses[J]. mBio, 2020, 11(3):e00760-20. doi: 10.1128/mBio.00760-20. |
[6] | WANG X, LAM J Y, WONG W M, et al. Accurate diagnosis of COVID-19 by a novel immunogenic secreted SARS-CoV-2 ORF8 protein[J]. mBio, 2020, 11(5):e02431-20. doi: 10.1128/mBio.02431-20. |
[7] | ZINZULA L. Lost in deletion:The enigmatic ORF8 protein of SARS-CoV-2[J]. Biochem Biophys Res Commun, 2021, 538:116-124. doi: 10.1016/j.bbrc.2020.10.045. |
[8] | LI J Y, LIAO C H, WANG Q, et al. The ORF6,ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway[J]. Virus Res, 2020, 286:198074. doi: 10.1016/j.virusres.2020.198074. |
[9] | RASHID F, SULEMAN M, SHAH A, et al. Mutations in SARS-CoV-2 ORF8 altered the bonding network with interferon regulatory factor 3 to evade host immune system[J]. Front Microbiol, 2021, 12:703145. doi: 10.3389/fmicb.2021.703145. |
[10] | RASHID F, DZAKAH E E, WANG H, et al. The ORF8 protein of SARS-CoV-2 induced endoplasmic reticulum stress and mediated immune evasion by antagonizing production of interferon beta[J]. Virus Res, 2021, 296:198350. doi: 10.1016/j.virusres.2021.198350. |
[11] | ZHANG Y, CHEN Y, LI Y, et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Iota[J]. Proc Natl Acad Sci U S A, 2021, 118(23):e2024202118. doi: 10.1073/pnas.2024202118. |
[12] | MCGEACHY M J, CUA D J, GAFFEN S L. The IL-17 family of cytokines in health and disease[J]. Immunity, 2019, 50(4):892-906. doi: 10.1016/j.immuni.2019.03.021. |
[13] | LIN X, FU B, YIN S, et al. ORF8 contributes to cytokine storm during SARS-CoV-2 infection by activating IL-17 pathway[J]. iScience, 2021, 24(4):102293. doi: 10.1016/j.isci.2021.102293. |
[14] | SUNG S C, CHAO C Y, JENG K S, et al. The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6[J]. Virology, 2009, 387(2):402-413. doi: 10.1016/j.virol.2009.02.021. |
[15] | MUTH D, CORMAN V M, ROTH H, et al. Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission[J]. Sci Rep, 2018, 8(1):15177. doi: 10.1038/s41598-018-33487-8. |
[16] | OOSTRA M, DE HAAN C A, ROTTIER P J. The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8[J]. J Virol, 2007, 81(24):13876-13888. doi: 10.1128/JVI.01631-07. |
[17] | HELENIUS A, AEBI M. Intracellular functions of N-linked glycans[J]. Science, 2001, 291(5512):2364-2369. doi: 10.1126/science.291.5512.2364. |
[18] | LE T M, WONG H H, TAY F P, et al. Expression, post-translational modification and biochemical characterization of proteins encoded by subgenomic mRNA8 of the severe acute respiratory syndrome coronavirus[J]. FEBS J, 2007, 274(16):4211-4222. doi: 10.1111/j.1742-4658.2007.05947.x. |
[19] | WONG H H, FUNG T S, FANG S, et al. Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3[J]. Virology, 2018, 515:165-175. doi: 10.1016/j.virol.2017.12.028. |
[20] | CHEN C Y, PING Y H, LEE H C, et al. Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis[J]. J Infect Dis, 2007, 196(3):405-415. doi: 10.1086/519166. |
[21] | PAL A, DOBHAL S, DEY K K, et al. Polymorphic landscape of SARS-CoV-2 genomes isolated from Indian population in 2020 demonstrates rapid evolution in ORF3a, ORF8, nucleocapsid phosphoprotein and spike glycoprotein[J]. Comput Biol Chem, 2021, 95:107594. doi: 10.1016/j.compbiolchem.2021.107594. |
[22] | GONG Y N, TSAO K C, HSIAO M J, et al. SARS-CoV-2 genomic surveillance in Taiwan revealed novel ORF8-deletion mutant and clade possibly associated with infections in Middle East[J]. Emerg Microbes Infect, 2020, 9(1):1457-1466. doi: 10.1080/22221751.2020.1782271. |
[23] | SU Y C F, ANDERSON D E, YOUNG B E, et al. Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2[J]. mBio, 2020, 11(4):e01610-e01620. doi: 10.1128/mBio.01610-20. |
[24] | PEREIRA F. SARS-CoV-2 variants combining spike mutations and the absence of ORF8 may be more transmissible and require close monitoring[J]. Biochem Biophys Res Commun, 2021, 550:8-14. doi: 10.1016/j.bbrc.2021.02.080. |
[25] | CERAOLO C, GIORGI F M. Genomic variance of the 2019-nCoV coronavirus[J]. J Med Virol, 2020, 92(5):522-528. doi: 10.1002/jmv.25700. |
[26] | ALKHANSA A, LAKKIS G, EL ZEIN L. Mutational analysis of SARS-CoV-2 ORF8 during six months of COVID-19 pandemic[J]. Gene Rep, 2021, 23:101024. doi: 10.1016/j.genrep.2021.101024. |
[27] | LAHA S, CHAKRABORTY J, DAS S, et al. Characterizations of SARS-CoV-2 mutational profile,spike protein stability and viral transmission[J]. Infect Genet Evol, 2020, 85:104445. doi: 10.1016/j.meegid.2020.104445. |
[28] | DE SOUSA E, LIGEIRO D, LERIAS J R, et al. Mortality in COVID-19 disease patients:Correlating the association of major histocompatibility complex (MHC) with severe acute respiratory syndrome 2 (SARS-CoV-2) variants[J]. Int J Infect Dis, 2020, 98:454-459. doi: 10.1016/j.ijid.2020.07.016. |
[29] | WANG R, CHEN J, GAO K, et al. Analysis of SARS-CoV-2 mutations in the United States suggests presence of four substrains and novel variants[J]. Commun Biol, 2021, 4(1):228. doi: 10.1038/s42003-021-01754-6. |
[30] | HASSAN S S, ALJABALI A A A, PANDA P K, et al. A unique view of SARS-CoV-2 through the lens of ORF8 protein[J]. Comput Biol Med, 2021, 133:104380. doi: 10.1016/j.compbiomed. 2021.104380. |
[31] | AMANAT F, STADLBAUER D, STROHMEIER S, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans[J]. Nat Med, 2020, 26(7):1033-1036. doi: 10.1038/s41591-020-0913-5. |
[32] | GORDON D E, JANG G M, BOUHADDOU M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing[J]. Nature, 2020, 583(7816):459-468. doi: 10.1038/s41586-020-2286-9. |
[33] | ERUKAINURE O L, ATOLANI O, MUHAMMAD A, et al. Translational suppression of SARS-COV-2 ORF8 protein mRNA as a Viable therapeutic target against COVID-19: Computational studies on potential roles of isolated compounds from Clerodendrum volubile leaves[J]. Comput Biol Med, 2021, 139:104964. doi: 10.1016/j.compbiomed.2021.104964. |
[1] | GU Songtao, JIA Wei, LI Yuechuan, ZHANG Dongrui, ZHANG Yating, GAO Shulian, LI Na. Clinical characteristics of COVID-19 complicated with pulmonary thromboembolism [J]. Tianjin Medical Journal, 2023, 51(8): 873-877. |
[2] | LI Xiyuan, ZHU Zhixin, ZHAO Hailong . Recent advances in the mechanisms of drug resistance and treatment of BRAF-mutant melanoma [J]. Tianjin Medical Journal, 2022, 50(2): 214-219. |
[3] | WANG Yuliang, LONG Yiyin, CHEN Xiaobo. Genetic and pathogenic characteristics of SARS-CoV-2 variants [J]. Tianjin Medical Journal, 2022, 50(10): 1103-1109. |
[4] | GUO Jing, LI Li, WU Qian, LI Hong-wei, SHI Li-xia, WU Qi. The effect of the systemic immune-inflammation index on conversion time of virus nucleic acid turning negative in COVID-19 patients [J]. Tianjin Medical Journal, 2021, 49(11): 1188-1192. |
[5] |
ZHAO Lei , XUE Jian , WANG Yu-ling△, DAI Er-hei , XU Zun-gui , LI Ya-nan , DUN Zi-qian , GAO Hui-xia , RONG Yan-xiao , CHEN Can.
The clinical feature and imaging analysis of patients with new coronavirus infection in Shijiazhuang
[J]. Tianjin Medical Journal, 2020, 48(7): 588-591.
|
[6] | WANG Xiao-wu, ZHU Yi-lang, LI Tuan-tuan, GAO Yong△. Evaluation of SARS-COV-2 nucleic acid in convalescent anal swabs of patients with coronavirus disease 2019 [J]. Tianjin Medical Journal, 2020, 48(7): 592-595. |
[7] | ZHU Yi-lang , XU Yuan-hong , WANG Xiao-wu , LI Mei , GAO Yong△. Changes of blood routine examination and lymphocyte subsets in patients with COVID-19 [J]. Tianjin Medical Journal, 2020, 48(7): 596-598. |
[8] | YU Hong-zhi , SHAO Hong-xia , XING Zhi-heng , QIN Zhong-hua , FU Sha-sha , HU Song , WU Qi△. Analysis of clinical characteristics of patients with COVID-19 in Tianjin [J]. Tianjin Medical Journal, 2020, 48(7): 577-582. |
[9] | BAI Xue, HE Ping△. Screening of K-RAS mutation related lincRNA in colorectal carcinoma based on TCGA database [J]. Tianjin Medical Journal, 2020, 48(7): 616-620. |
[10] | YU Hong-zhi, XU Lei, CONG Hong-liang, WU Qi△. Discussion on the treatment of COVID-19 in Tianjin [J]. Tianjin Medical Journal, 2020, 48(6): 479-482. |
[11] | DU Xiao-yan, MA Hui△. A case report of a patient highly suspected novel coronavirus pneumonia with six times of negative nucleic acid test [J]. Tianjin Medical Journal, 2020, 48(6): 490-493. |
[12] | WANG Yu-liang△, WANG Feng, GENG Jie. Cytokine and cytokine storm #br# [J]. Tianjin Medical Journal, 2020, 48(6): 494-499. |
[13] | MU Juan, LYU Hai-rong, LI Jing-yi, JIANG Yan-yu, ZHANG Rui, MENG Juan-xia, YUAN Ting , DENG Qi. CD22 CAR-T salvage therapy for a refractory acute B lymphocytic leukemia patient with TP53#br# positive mutation and short-term recurrence after remission from CD19 CAR-T therapy #br# [J]. Tianjin Medical Journal, 2020, 48(4): 308-312. |
[14] | LIU Zhu-feng, WANG Wen-hong, ZHANG Xuan, CHEN Wen-yu. X-linked congenital renal diabetes insipidus caused by AVPR2 gene mutation: a case report [J]. Tianjin Medical Journal, 2020, 48(2): 141-145. |
[15] | LU Cheng-fei, GUO Zhi-yi△, LU Bi-jia, LI Xiao-qian, LIU Jia-wei. Screening and analysis of PAH gene mutations in children with phenylketonuria Tangshan city [J]. Tianjin Medical Journal, 2020, 48(10): 1006-1009. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||