Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (3): 329-332.doi: 10.11958/20221284
Previous Articles Next Articles
JIN Heng1(), LIU Qihui1, SUN Keke1, SONG Jie2, LYU Qi3, ZHANG Yan△(
)
Received:
2022-08-16
Revised:
2022-10-10
Published:
2023-03-15
Online:
2023-03-02
Contact:
ZHANG Yan
E-mail:hengjin@tmu.edu.cn;yan-zhang@tmu.edu.cn
JIN Heng, LIU Qihui, SUN Keke, SONG Jie, LYU Qi, ZHANG Yan. Advances in complications and management of rhabdomyolysis[J]. Tianjin Medical Journal, 2023, 51(3): 329-332.
CLC Number:
[1] | ZUTT R, VAN DER KOOI A J, LINTHORST G E, et al. Rhabdomyolysis:review of the literature[J]. Neuromuscul Disord, 2014, 24(8):651-659. doi:10.1016/j.nmd.2014.05.005. |
[2] | CABRAL B, EDDING S N, PORTOCARRERO J P, et al. Rhabdomyolysis[J]. Dis Mon, 2020, 66(8):101015. doi:10.1016/j.disamonth.2020.101015. |
[3] | KODADEK L, CARMICHAEL Ⅱ S P, SESHADRI A, et al. Rhabdomyolysis:An American Association for the Surgery of Trauma Critical Care Committee Clinical Consensus Document[J]. Trauma Surg Acute Care Open, 2022, 7(1):e000836. doi:10.1136/tsaco-2021-000836. |
[4] | DANTAS G, DE ALKMIM MOREIRA NUNES R, CASIMIRO-LOPES G, et al. Analysis of physiological markers and risk factors for the development of rhabdomyolysis in military personnel:A systematic review[J]. Rev Environ Health, 2022. doi:10.1515/reveh-2022-0038.[Online ahead of print]. |
[5] | CAI Y, HUANG C, ZHOU M, et al. Role of curcumin in the treatment of acute kidney injury:research challenges and opportunities[J]. Phytomedicine, 2022, 104:154306. doi:10.1016/j.phymed.2022.154306. |
[6] | ZHANG J, WANG B, YUAN S, et al. The role of ferroptosis in acute kidney injury[J]. Front Mol Biosci, 2022, 9:951275. doi:10.3389/fmolb.2022.951275. |
[7] | CHOU Y T, KAN W C, SHIAO C C. Acute kidney injury and gut dysbiosis:A narrative review focus on pathophysiology and treatment[J]. Int J Mol Sci, 2022, 23(7):3658. doi:10.3390/ijms23073658. |
[8] | LIU Y, LI M, TEH L, et al. Emodin-mediated treatment of acute kidney injury[J]. Evid Based Complement Alternat Med, 2022, 2022:5699615. doi:10.1155/2022/5699615. |
[9] | JIN H, LIN X, LIU Z, et al. Remote ischemic postconditioning protects against crush-induced acute kidney injury via down-regulation of apoptosis and senescence[J]. Eur J Trauma Emerg Surg, 2022, 48(6):4585-4593. doi:10.1007/s00068-022-01910-5. |
[10] | LIN X, JIN H, CHAI Y, et al. Cellular senescence and acute kidney injury[J]. Pediatr Nephrol, 2022, 37(12):3009-3018. doi:10.1007/s00467-022-05532-2. |
[11] | BOSS K, KRIBBEN A. Treatment and progression management of acute kidney injury[J]. Dtsch Med Wochenschr, 2022, 147(5):246-252. doi:10.1055/a-1557-6909. |
[12] | PLOS ONE Staff. Correction:Penehyclidine hydrochloride pretreatment ameliorates rhabdomyolysis-induced AKI by activating the Nrf2/HO-1 pathway and allevi-ating endoplasmic reticulum stress in rats[J]. PLoS One, 2016, 11(4):e0154138. doi:10.1371/journal.pone.0154138. |
[13] | BOUDHABHAY I, POILLERAT V, GRUNENWALD A, et al. Complement activation is a crucial driver of acute kidney injury in rhabdomyolysis[J]. Kidney Int, 2021, 99(3):581-597. doi:10.1016/j.kint.2020.09.033. |
[14] | MARD S A, HOSEINYNEJAD K, NEJADDEHBASHI F. Gallic acid improves therapeutic effects of mesenchymal stem cells derived from adipose tissue in acute renal injury following rhabdomyolysis induced by glycerol[J]. Inflammation, 2022. doi:10.1007/s10753-022-01691-4. [Online ahead of print]. |
[15] | AKMAL M, MASSRY S G. Reversible hepatic dysfunction associated with rhabdomyolysis[J]. Am J Nephrol, 1990, 10(1):49-52. doi:10.1159/000168053. |
[16] | MELILA M, RAJARAM R, GANESHKUMAR A, et al. Assessment of renal and hepatic dysfunction by co-exposure to toxic metals(Cd,Pb)and fluoride in people living nearby an industrial zone[J]. J Trace Elem Med Biol, 2022, 69:126890. doi:10.1016/j.jtemb.2021.126890. |
[17] | SHARMA N, GAIKWAD A B. Ameliorative effect of AT2R and ACE2 activation on ischemic renal injury associated cardiac and hepatic dysfunction[J]. Environ Toxicol Pharmacol, 2020, 80:103501. doi:10.1016/j.etap.2020.103501. |
[18] | MA X, XU S, LI J, et al. Selenomethionine protected BMECs from inflammatory injury and oxidative damage induced by Klebsiella pneumoniae by inhibiting the NF-κB and activating the Nrf2 signaling pathway[J]. Int Immunopharmacol, 2022, 110:109027. doi:10.1016/j.intimp.2022.109027. |
[19] | LARSEN R, GOUVEIA Z, SOARES M P, et al. Heme cytotoxicity and the pathogenesis of immune-mediated inflammatory diseases[J]. Front Pharmacol, 2012, 3:77. doi:10.3389/fphar.2012.00077. |
[20] | PAPAGEORGIOU C, JOURDI G, ADJAMBRI E, et al. Disseminated intravascular coagulation:An update on pathogenesis,diagnosis,and therapeutic strategies[J]. Clin Appl Thromb Hemost, 2018, 24(9_suppl):8S-28 S. doi:10.1177/1076029618806424. |
[21] | BAATARJAV C, KOMADA T, KARASAWA T, et al. dsDNA-induced AIM2 pyroptosis halts aberrant inflammation during rhabdomyolysis-induced acute kidney injury[J]. Cell Death Differ, 2022. doi:10.1038/s41418-022-01033-9. [Online ahead of print]. |
[22] | LELONGE Y, GAVID M, VIEVILLE M, et al. Tension pneumoperitoneum and acute abdominal compartment syndrome during panendoscopy[J]. Eur Ann Otorhinolaryngol Head Neck Dis, 2022: S1879- 7296(22)00067-9. doi:10.1016/j.anorl.2022.06.006. |
[23] | RITCHIE E D, VOGELS S, VAN DONGEN T, et al. Systematic review of innovative diagnostic tests for chronic exertional compartment syndrome[J]. Int J Sports Med, 2022. doi:10.1055/a-1866-5957. [Online ahead of print]. |
[24] | CHEN X, WANG X, HONORE P M, et al. Renal failure in critically ill patients, beware of applying (central venous)pressure on the kidney[J]. Ann Intensive Care, 2018, 8(1):91. doi:10.1186/s13613-018-0439-x. |
[25] | KIM H W, KIM S, OHN J H, et al. Role of bicarbonate and volume therapy in the prevention of acute kidney injury in rhabdomyolysis:A retrospective propensity score-matched cohort study[J]. Kidney Res Clin Pract, 2022, 41(3):310-321. doi:10.23876/j.krcp.21.093. |
[26] | PEZZI M, GIGLIO A M, SCOZZAFAVA A, et al. Early intensive treatment to prevent kidney failure in post-traumatic rhabdomyolysis:Case report[J]. SAGE Open Med Case Rep, 2019, 7:2050313X19839529. doi:10.1177/2050313X19839529. |
[27] | BROWN C V, RHEE P, CHAN L, et al. Preventing renal failure in patients with rhabdomyolysis:do bicarbonate and mannitol make a difference?[J]. J Trauma, 2004, 56(6):1191-1196. doi:10.1097/01.ta.0000130761.78627.10. |
[28] | ZHENG T, LIU L, LIU J, et al. Rhabdomyolysis happened after the start of dabigatran etexilate treatment:A case report[J]. J Musculoskelet Neuronal Interact, 2022, 22(2):296-300. |
[29] | 陈艾萍, 王建文, 伍宏. 不同血液净化模式治疗横纹肌溶解症的疗效比较[J]. 中华卫生应急电子杂志, 2020, 6(6):332-336. |
CHEN A P, WANG J W, WU H. Comparison of different blood purification modes in rhabdomyolysis[J]. Chinese Journal Hygiene Rescue, 2020, 6(6):332-336. doi:10.3877/cma.j.issn.2095-9133.2020.06.002. | |
[30] | GUPTA A, THORSON P, PENMATSA K R, et al. Rhabdomyolysis:Revisited[J]. Ulster Med J, 2021, 90(2):61-69. |
[31] | YANG X Y, SONG J, HOU S K, et al. Ulinastatin ameliorates acute kidney injury induced by crush syndrome inflammation by modulating Th17/Treg cells[J]. Int Immunopharmacol, 2020, 81:106265. doi:10.1016/j.intimp.2020.106265. |
[32] | WANG J, XU G, JIN H, et al. Ulinastatin alleviates rhabdomyolysis-induced acute kidney injury by suppressing inflammation and apoptosis via inhibiting TLR4/NF-κB signaling pathway[J]. Inflammation, 2022, 45(5):2052-2065. doi:10.1007/s10753-022-01675-4. |
[33] | HIGGINS S P, TANG Y, HIGGINS C E, et al. TGF-β1/p53 signaling in renal fibrogenesis[J]. Cell Signal, 2018, 43:1-10. doi:10.1016/j.cellsig.2017.11.005. |
[34] | YUQIANG C, LISHA Z, JIEJUN W, et al. Pifithrin-α ameliorates glycerol induced rhabdomyolysis and acute kidney injury by reducing p53 activation[J]. Ren Fail, 2022, 44(1):473-481. doi:10.1080/0886022X.2022.2048857. |
[35] | GOIS P, CANALE D, VOLPINI R A, et al. Allopurinol attenuates rhabdomyolysis-associated acute kidney injury:Renal and muscular protection[J]. Free Radic Biol Med, 2016, 101:176-189. doi:10.1016/j.freeradbiomed.2016.10.012. |
[36] | BOLISETTY S, ZARJOU A, AGARWAL A. Heme oxygenase 1 as a therapeutic target in acute kidney injury[J]. Am J Kidney Dis, 2017, 69(4):531-545. doi:10.1053/j.ajkd.2016.10.037. |
[37] | OHTANI S, SHIMIZU H, YAMAOKA M, et al. Protective effect of tin chloride on rhabdomyolysis-induced acute kidney injury in rats[J]. PLoS One, 2022, 17(3):e0265512. doi:10.1371/journal.pone.0265512. |
[38] | WANG J, CHEN Z, HOU S, et al. TAK-242 attenuates crush injury induced acute kidney injury through inhibiting TLR4/NF-κB signaling pathways in rats[J]. Prehosp Disaster Med, 2020, 35(6):619-628. doi:10.1017/S1049023X20001132. |
[39] | CREAGH-BROWN B C, QUINLAN G J, EVANS T W, et al. The RAGE axis in systemic inflammation, acute lung injury and myocardial dysfunction:an important therapeutic target?[J]. Intensive Care Med, 2010, 36(10):1644-1656. doi:10.1007/s00134-010-1952-z. |
[40] | GUARNERI F, CUSTURONE P, PAPAIANNI V, et al. Involvement of RAGE and oxidative stress in inflammatory and infectious skin diseases[J]. Antioxidants (Basel), 2021, 10(1):82. doi:10.3390/antiox10010082. |
[41] | MATSUMOTO H, MATSUMOTO N, SHIMAZAKI J, et al. Therapeutic effectiveness of anti-rage antibody administration in a rat model of crush injury[J]. Sci Rep, 2017, 7(1):12255. doi:10.1038/s41598-017-12065-4. |
[42] | VANPATTEN S, AL-ABED Y. High mobility group box-1(HMGb1):Current wisdom and advancement as a potential drug target[J]. J Med Chem, 2018, 61(12):5093-5107. doi:10.1021/acs.jmedchem.7b01136. |
[43] | ZHANG B F, WANG P F, CONG Y X, et al. Anti-high mobility group box-1(HMGB1)antibody attenuates kidney damage following experimental crush injury and the possible role of the tumor necrosis factor-α and c-Jun N-terminal kinase pathway[J]. J Orthop Surg Res, 2017, 12(1): 110. doi:10.1186/s13018-017-0614-z. |
[44] | DUFFY M M, GRIFFIN M D. Back from the brink:a mesenchymal stem cell infusion rescues kidney function in acute experimental rhabdomyolysis[J]. Stem Cell Res Ther, 2014, 5(5):109. doi:10.1186/scrt497. |
[45] | WANG S, ZHANG C, LI J, et al. Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization[J]. Cell Death Dis, 2017, 8(4):e2725. doi:10.1038/cddis.2017.104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||