Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (1): 28-32.doi: 10.11958/20231475
• Monograph·Organoid and Organoid-on-A-Chip • Previous Articles Next Articles
Received:
2023-10-16
Published:
2024-01-15
Online:
2024-01-18
Contact:
△E-mail:SI Wuxuerong, JIANG Ming. Application of organoids in basic research and clinical translation of cancers[J]. Tianjin Medical Journal, 2024, 52(1): 28-32.
CLC Number:
项目 | 2D细胞系 | PDX | PDOs | |
---|---|---|---|---|
肿瘤建模 | 时间 | 较长 | 长 | 较短 |
微环境来源 | 无 | 小鼠 | 共培养 | |
肿瘤异质性 | 同质 | 异质 | 异质 | |
肿瘤阶段 | 晚期 | 晚期 | 早期到晚期 | |
药物筛选 | 成本 | 低 | 高 | 较高 |
时间 | 短 | 长 | 较长 | |
高通量药物筛选 | 快 | 无法实现 | 较快 | |
临床反应相关性 | 弱 | 较强 | 强 |
Tab.1 Characterization of 2D cell lines, PDX and PDOs in tumor modeling and drug sreening
项目 | 2D细胞系 | PDX | PDOs | |
---|---|---|---|---|
肿瘤建模 | 时间 | 较长 | 长 | 较短 |
微环境来源 | 无 | 小鼠 | 共培养 | |
肿瘤异质性 | 同质 | 异质 | 异质 | |
肿瘤阶段 | 晚期 | 晚期 | 早期到晚期 | |
药物筛选 | 成本 | 低 | 高 | 较高 |
时间 | 短 | 长 | 较长 | |
高通量药物筛选 | 快 | 无法实现 | 较快 | |
临床反应相关性 | 弱 | 较强 | 强 |
[1] | ABOULKHEYR ES H, MONTAZERI L, AREF A R, et al. Personalized cancer medicine:an organoid approach[J]. Trends Biotechnol, 2018, 36(4):358-371. doi:10.1016/j.tibtech.2017.12.005. |
[2] | SHIN S H, BODE A M, DONG Z. Precision medicine:the foundation of future cancer therapeutics[J]. NPJ Precis Oncol, 2017, 1(1):12. doi:10.1038/s41698-017-0016-z. |
[3] | PRIOR N, INACIO P, HUCH M. Liver organoids:from basic research to therapeutic applications[J]. Gut, 2019, 68(12):2228-2237. doi:10.1136/gutjnl-2019-319256. |
[4] | FANG Z, LI P, DU F, et al. The role of organoids in cancer research[J]. Exp Hematol Oncol, 2023, 12(1):69. doi:10.1186/s40164-023-00433-y. |
[5] | SUAREZ-MARTINEZ E, SUAZO-SANCHEZ I, CELIS-ROMERO M, et al. 3D and organoid culture in research:physiology,hereditary genetic diseases and cancer[J]. Cell Biosci, 2022, 12(1):39. doi:10.1186/s13578-022-00775-w. |
[6] | REN X, CHEN W, YANG Q, et al. Patient-derived cancer organoids for drug screening:basic technology and clinical application[J]. J Gastroenterol Hepatol, 2022, 37(8):1446-1454. doi:10.1111/jgh.15930. |
[7] | XU R, ZHOU X, WANG S, et al. Tumor organoid models in precision medicine and investigating cancer-stromal interactions[J]. Pharmacol Ther, 2021, 218:107668. doi:10.1016/j.pharmthera.2020.107668. |
[8] | KOPPER O, DE WITTE C J, LÕHMUSSAAR K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity[J]. Nat Med, 2019, 25(5):838-849. doi:10.1038/s41591-019-0422-6. |
[9] | XIA T, DU W L, CHEN X Y, et al. Organoid models of the tumor microenvironment and their applications[J]. J Cell Mol Med, 2021, 25(13):5829-5841. doi:10.1111/jcmm.16578. |
[10] | IDRISOVA K F, SIMON H U, GOMZIKOVA M O. Role of patient-derived models of cancer in translational oncology[J]. Cancers (Basel), 2022, 15(1):139. doi:10.3390/cancers15010139. |
[11] | SACHS N, DE LIGT J, KOPPER O, et al. A living biobank of breast cancer organoids captures disease heterogeneity[J]. Cell, 2018, 172(1/2):373-386.e310. doi:10.1016/j.cell.2017.11.010. |
[12] | KONDO J, INOUE M. Application of cancer organoid model for drug screening and personalized therapy[J]. Cells, 2019, 8(5):470. doi:10.3390/cells8050470. |
[13] | PETERSEN O W, RØNNOV-JESSEN L, HOWLETT A R, et al. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells[J]. Proc Natl Acad Sci U S A, 1992, 89(19):9064-9068. doi:10.1073/pnas.89.19.9064. |
[14] | YAN H H N, SIU H C, LAW S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening[J]. Cell Stem Cell, 2018, 23(6):882-897.e811. doi:10.1016/j.stem.2018.09.016. |
[15] | CALANDRINI C, SCHUTGENS F, OKA R, et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity[J]. Nat Commun, 2020, 11(1):1310. doi:10.1038/s41467-020-15155-6. |
[16] | EBISUDANI T, HAMAMOTO J, TOGASAKI K, et al. Genotype-phenotype mapping of a patient-derived lung cancer organoid biobank identifies NKX2-1-defined Wnt dependency in lung adenocarcinoma[J]. Cell Rep, 2023, 42(3):112212. doi:10.1016/j.celrep.2023.112212. |
[17] | JACOB F, SALINAS R D, ZHANG D Y, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity[J]. Cell, 2020, 180(1):188-204.e22. doi:10.1016/j.cell.2019.11.036. |
[18] | MO S, TANG P, LUO W, et al. Patient-derived organoids from colorectal cancer with paired liver metastasis reveal tumor heterogeneity and predict response to chemotherapy[J]. Adv Sci (Weinh), 2022, 9(31):e2204097. doi:10.1002/advs.202204097. |
[19] | KAWASAKI K, TOSHIMITSU K, MATANO M, et al. An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping[J]. Cell, 2020, 183(5):1420-1435.e21. doi:10.1016/j.cell.2020.10.023. |
[20] | MEISTER M T, GROOT KOERKAMP M J A, DE SOUZA T, et al. Mesenchymal tumor organoid models recapitulate rhabdomyosarcoma subtypes[J]. EMBO Mol Med, 2022, 14(10):e16001. doi:10.15252/emmm.202216001. |
[21] | XIAO Y, YU D. Tumor microenvironment as a therapeutic target in cancer[J]. Pharmacol Ther, 2021, 221:107753. doi:10.1016/j.pharmthera.2020.107753. |
[22] | BOUCHERIT N, GORVEL L, OLIVE D. 3D tumor models and their use for the testing of immunotherapies[J]. Front Immunol, 2020, 11:603640. doi:10.3389/fimmu.2020.603640. |
[23] | NEAL J T, LI X, ZHU J, et al. Organoid modeling of the tumor immune microenvironment[J]. Cell, 2018, 175(7):1972-1988.e16. doi:10.1016/j.cell.2018.11.021. |
[24] | YOSHIDA G J. Applications of patient-derived tumor xenograft models and tumor organoids[J]. J Hematol Oncol, 2020, 13(1):4. doi:10.1186/s13045-019-0829-z. |
[25] | TSAI S, MCOLASH L, PALEN K, et al. Development of primary human pancreatic cancer organoids,matched stromal and immune cells and 3D tumor microenvironment models[J]. BMC Cancer, 2018, 18(1):335. doi:10.1186/s12885-018-4238-4. |
[26] | LUO X, FONG E L S, ZHU C, et al. Hydrogel-based colorectal cancer organoid co-culture models[J]. Acta Biomater, 2021, 132:461-472. doi:10.1016/j.actbio.2020.12.037. |
[27] | SCHUTH S, LE BLANC S, KRIEGER T G, et al. Patient-specific modeling of stroma-mediated chemoresistance of pancreatic cancer using a three-dimensional organoid-fibroblast co-culture system[J]. J Exp Clin Cancer Res, 2022, 41(1):312. doi:10.1186/s13046-022-02519-7. |
[28] | LIM J T C, KWANG L G, HO N C W, et al. Hepatocellular carcinoma organoid co-cultures mimic angiocrine crosstalk to generate inflammatory tumor microenvironment[J]. Biomaterials, 2022, 284:121527. doi:10.1016/j.biomaterials.2022.121527. |
[29] | LO Y H, KOLAHI K S, DU Y, et al. A CRISPR/Cas9-engineered ARID1A-deficient human gastric cancer organoid model reveals essential and nonessential modes of oncogenic transformation[J]. Cancer Discov, 2021, 11(6):1562-1581. doi:10.1158/2159-8290.CD-20-1109. |
[30] | DEKKERS J F, WHITTLE J R, VAILLANT F, et al. Modeling breast cancer using CRISPR-Cas9-mediated engineering of human breast organoids[J]. J Natl Cancer Inst, 2020, 112(5):540-544. doi:10.1093/jnci/djz196. |
[31] | LIU X, CHENG Y, ABRAHAM J M, et al. Modeling Wnt signaling by CRISPR-Cas9 genome editing recapitulates neoplasia in human barrett epithelial organoids[J]. Cancer Lett, 2018, 436:109-118. doi:10.1016/j.canlet.2018.08.017. |
[32] | TAKEDA H, KATAOKA S, NAKAYAMA M, et al. CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes[J]. Proc Natl Acad Sci U S A, 2019, 116(31):15635-15644. doi:10.1073/pnas.1904714116. |
[33] | VERISSIMO C S, OVERMEER R M, PONSIOEN B, et al. Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening[J]. Elife, 2016, 5:e18489. doi:10.7554/eLife.18489. |
[34] | DING S, HSU C, WANG Z, et al. Patient-derived micro-organospheres enable clinical precision oncology[J]. Cell Stem Cell, 2022, 29(6):905-917.e6. doi:10.1016/j.stem.2022.04.006. |
[35] | DIJKSTRA K K, CATTANEO C M, WEEBER F, et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids[J]. Cell, 2018, 174(6):1586-1598.e1512. doi:10.1016/j.cell.2018.07.009. |
[36] | CHEN P, ZHANG X, DING R, et al. Patient-derived organoids can guide personalized-therapies for patients with advanced breast cancer[J]. Adv Sci (Weinh), 2021, 8(22):e2101176. doi:10.1002/advs.202101176. |
[37] | TIRIAC H, BELLEAU P, ENGLE D D, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer[J]. Cancer Discov, 2018, 8(9):1112-1129. doi:10.1158/2159-8290.CD-18-0349. |
[38] | VLACHOGIANNIS G, HEDAYAT S, VATSIOU A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378):920-926. doi:10.1126/science.aao2774. |
[39] | YAO Y, XU X, YANG L, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer[J]. Cell Stem Cell, 2020, 26(1):17-26.e16. doi:10.1016/j.stem.2019.10.010. |
[40] | HU Y, SUI X, SONG F, et al. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week[J]. Nat Commun, 2021, 12(1):2581. doi:10.1038/s41467-021-22676-1. |
[41] | KRETZSCHMAR K. Cancer research using organoid technology[J]. J Mol Med (Berl), 2021, 99(4):501-515. doi:10.1007/s00109-020-01990-z. |
[42] | CLINTON J, MCWILLIAMS-KOEPPEN P. Initiation,expansion,and cryopreservation of human primary tissue-derived normal and diseased organoids in embedded three-dimensional culture[J]. Curr Protoc Cell Biol, 2019, 82(1):e66. doi:10.1002/cpcb.66. |
[43] | FOO M A, YOU M, CHAN S L, et al. Clinical translation of patient-derived tumour organoids- bottlenecks and strategies[J]. Biomark Res, 2022, 10(1):10. doi:10.1186/s40364-022-00356-6. |
[44] | DROST J, CLEVERS H. Organoids in cancer research[J]. Nat Rev Cancer, 2018, 18(7):407-418. doi:10.1038/s41568-018-0007-6. |
[45] | WEEBER F, OOFT S N, DIJKSTRA K K, et al. Tumor organoids as a pre-clinical cancer model for drug discovery[J]. Cell Chem Biol, 2017, 24(9):1092-1100. doi:10.1016/j.chembiol.2017.06.012. |
[1] | CHEN Zhiyan, WU Qiuyuan, DENG Yuhua, ZHOU Dan. Status and application of organoid technology in breast cancer research [J]. Tianjin Medical Journal, 2024, 52(6): 668-672. |
[2] | LIU Danyang, LI Yongtao, ZHANG Haiyan, LI Lin, LIU Yang, SHEN Lei. Effect of breast cancer cell conditioned medium on biological behavior of bone marrow mesenchymal stem cells [J]. Tianjin Medical Journal, 2024, 52(5): 454-458. |
[3] | ZHANG Caidie, JIN Yan, ZHANG Dede. The anti-tumor effect of Runfei Yishen drink on lung cancer bearing rats and its impact on tumor immune microenvironment [J]. Tianjin Medical Journal, 2024, 52(4): 362-366. |
[4] | MENG Fanlu, HAN Yiming, XIU Jidong, HUANG Jianyong. Advances in high-throughput automated organoid-on-a-chip system [J]. Tianjin Medical Journal, 2024, 52(1): 1-3. |
[5] | CHEN Hao, LI Rui, YI Fei, ZHOU Li, CHEN Jiaqi, ZHU Fan, GUAN Chengyan, WU Na. Construction of mouse intestinal organoid inflammation model [J]. Tianjin Medical Journal, 2024, 52(1): 16-21. |
[6] | JIANG Zhongmin, ZHANG Chunyan, LIU Min, ZHENG Jie, LI Yanxia, REN Qingcuo, MENG Wei, LIU Xiaozhi. Construction of micropapillary lung adenocarcinoma organoids and screening of targeted drugs [J]. Tianjin Medical Journal, 2024, 52(1): 22-27. |
[7] | LEI Min, CAI Chunquan. Research progress on the application of organoids in genetic diseases of childhood [J]. Tianjin Medical Journal, 2024, 52(1): 33-37. |
[8] | SUN Kexin, XIAO Yuqian, WAN Jun, CHEN Shuying, CHEN Limin, WANG Yan, BAI Yanjie. Research progress of cerebral organoid technology and its application in stroke treatment [J]. Tianjin Medical Journal, 2024, 52(1): 38-43. |
[9] | SONG Licheng, ZHANG Yuhan, YU Zhongkuo, XIE Lixin. Construction of airway organoid microinjection and polarity reversal model [J]. Tianjin Medical Journal, 2024, 52(1): 4-10. |
[10] | ZHANG Zhenhua, FU Wei, LIU Weiliang, LI Junyan, HUANG Tao, HU Hui, FAN Zhigang. Application of PET/CT radiomics combined with LncRNA-DGCR5 in precision medicine of NSCLC [J]. Tianjin Medical Journal, 2023, 51(9): 1011-1015. |
[11] | HAO De, LI Kuan, WANG Jianhai, YUE Qing, CHEN Huaiyong. Effects of nitric oxide-mediated metabolic disruption on the proliferation of mouse airway progenitor cells [J]. Tianjin Medical Journal, 2023, 51(5): 477-481. |
[12] | LIU Danyang, WANG Lulu, HE Jun, JIANG Yang, LI Yongtao, ZHANG Xiaodong, LI Penghui, SHEN Lei. The mechanism of breast cancer cell culture supernatant promoting migration and proliferation of human adipose mesenchymal stem cells [J]. Tianjin Medical Journal, 2023, 51(11): 1153-1157. |
[13] | YU Xian-zhe, ZHU Ling-ling, LI Jian-guo. Vascular normalization and immunotherapy in hepatocellular carcinoma #br# [J]. Tianjin Medical Journal, 2021, 49(2): 219-224. |
[14] | WANG Hai-tao△. The progress of clinical precision medicine in castration-resistant prostate cancer [J]. Tianjin Med J, 2017, 45(4): 337-341. |
[15] | WANG Ling, ZHAO Pengfei, LYU Yipin, GUO Jingyi, SUN Ming, WU Huizhe, WEI Minjie. The effects of tumor microenvironment on the development and progression of breast cancer [J]. Tianjin Med J, 2016, 44(4): 413-417. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||