Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (2): 119-123.doi: 10.11958/20231027
• Cell and Molecular Biology • Previous Articles Next Articles
YI Na1(), XIAO Wen2, TIAN Yuan3, YUAN Lili3,△(
)
Received:
2023-07-20
Revised:
2023-09-01
Published:
2024-02-15
Online:
2024-01-26
Contact:
△ E-mail: YI Na, XIAO Wen, TIAN Yuan, YUAN Lili. Mechanism of BMAL1 attenuating H2O2-induced cardiomyocyte injury[J]. Tianjin Medical Journal, 2024, 52(2): 119-123.
CLC Number:
组别 | n | 细胞活力 | ROS/% |
---|---|---|---|
Control组 | 6 | 0.81±0.07 | 100.90±2.20 |
H2O2组 | 6 | 0.38±0.04a | 195.50±12.37a |
BMAL1-OE组 | 6 | 0.83±0.06 | 99.17±1.89 |
BMAL1-OE+H2O2组 | 6 | 0.64±0.05b | 143.50±6.12b |
F | 79.290** | 248.700** |
Tab.1 Comparison of cell viability and ROS production of H9c2 cardiomyocytes between the four groups of part one
组别 | n | 细胞活力 | ROS/% |
---|---|---|---|
Control组 | 6 | 0.81±0.07 | 100.90±2.20 |
H2O2组 | 6 | 0.38±0.04a | 195.50±12.37a |
BMAL1-OE组 | 6 | 0.83±0.06 | 99.17±1.89 |
BMAL1-OE+H2O2组 | 6 | 0.64±0.05b | 143.50±6.12b |
F | 79.290** | 248.700** |
组别 | n | 细胞活力 | ROS/% |
---|---|---|---|
BMAL1-OE组 | 6 | 0.91±0.06 | 101.80±4.98 |
BMAL1-OE+H2O2组 | 6 | 0.65±0.04a | 142.30±10.34a |
BMAL1-OE+ML385组 | 6 | 0.87±0.07 | 100.70±2.42 |
BMAL1-OE+ML385+H2O2组 | 6 | 0.53±0.07b | 168.90±8.64b |
F | 56.170** | 124.900** |
Tab.2 Comparison of cell viability and ROS production of H9c2 cardiomyocytes between the four groups of part two
组别 | n | 细胞活力 | ROS/% |
---|---|---|---|
BMAL1-OE组 | 6 | 0.91±0.06 | 101.80±4.98 |
BMAL1-OE+H2O2组 | 6 | 0.65±0.04a | 142.30±10.34a |
BMAL1-OE+ML385组 | 6 | 0.87±0.07 | 100.70±2.42 |
BMAL1-OE+ML385+H2O2组 | 6 | 0.53±0.07b | 168.90±8.64b |
F | 56.170** | 124.900** |
[1] | 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6):521-545. |
The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases burden in china:an updated summary of 2020[J]. Chin Circ J, 2021, 36(6):521-545. doi:10.3969/j.issn.1000-3614.2021.06.001. | |
[2] | 赵冬. 心血管疾病危险因素的研究:过去、现在和未来[J]. 中国循环杂志, 2021, 36(1):1-3. |
ZHAO D. Research on cardiovascular disease risk factors:past,present and future[J]. Chin Circ J, 2021, 36(1):1-3. doi:10.3969/j.issn.1000-3614.2021.01.001. | |
[3] | PELLEGRINI C, MARTELLI A, ANTONIOLI L, et al. NLRP3 inflammasome in cardiovascular diseases:Pathophysiological and pharmacological implications[J]. Med Res Rev, 2021, 41(4):1890-1926. doi:10.1002/med.21781. |
[4] | 谭红梅. NLRP3炎症小体与心血管疾病[J]. 中山大学学报(医学科学版), 2017, 38(2):215-221. |
TAN H M. Role of NLRP3 inflammasome in cardiovascular diseases[J]. J Sun Yat-sen Univ (Med Sci), 2017, 38(2):215-221. doi:10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2017.0035. | |
[5] | THOSAR S S, BUTLER M P, SHEA S A. Role of the circadian system in cardiovascular disease[J]. J Clin Invest, 2018, 128(6):2157-2167. doi:10.1172/JCI80590. |
[6] | 易娜, 袁李礼. BMAL1对H2O2诱导的H9c2心肌细胞损伤的影响及机制探讨[J]. 天津医药, 2021, 49(8):791-795. |
YI N, YUAN L L. Effects and mechanism of BMAL1 on H2O2-induced H9C2 cardiomyocyte injury[J]. Tianjin Med J, 2021, 49(8):791-795. doi:10.11958/20210463. | |
[7] | 杨瑾, 徐志峰, 苏嘉, 等. 生物钟基因与心血管疾病的研究进展[J]. 中华心血管病杂志, 2020, 48(7):610-615. |
YANG J, XU Z F, SU J, et al. Research progress on the circadian clock regulation in cardiovascular system and associationbetween circadian clock regulation and cardiovascular diseases[J]. Chin J Cardiol, 2020, 48(7):610-615. doi:10.3760/cma.j.cn112148-20190725-00430. | |
[8] | 易娜, 李贺, 游三丽, 等. 丹参酮ⅡA通过AK003290减轻H2O2诱导的原代小鼠心肌细胞焦亡[J]. 中国病理生理杂志, 2021, 37(6):1035-1041. |
YI N, LI H, YOU S L, et al. Tanshinone IIA attenuates H2O2-induced primary mouse cardiomyocyte pyroptosis via AK003290[J]. Chin J Pathophysiol, 2021, 37(6):1035-1041. doi:10.11958/20210463. | |
[9] | ABBATE A, TOLDO S, MARCHETTI C, et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease[J]. Circ Res, 2020, 126(9):1260-1280. |
[10] | PANDEY A, SHEN C, FENG S, et al. Cell biology of inflammasome activation[J]. Trends Cell Biol, 2021, 31(11):924-939. doi:10.1016/j.tcb.2021.06.010. |
[11] | ZHAO T, WU W, SUI L, et al. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries[J]. Bioact Mater, 2021, 7:47-72. doi:10.1016/j.bioactmat.2021.06.006. |
[12] | 王佳慧, 梁欢, 方典, 等. 抑制线粒体活性氧自由基可减轻高糖诱导的心肌细胞焦亡和铁死亡[J]. 南方医科大学学报, 2021, 41(7):980-987. |
WANG J H, LIANG H, FANG D, et al. Inhibition of mitochondrial reactive oxygen species reduces high glucose-induced pyroptosis and ferroptosis in H9C2 cardiac myocytes[J]. J South Med Univ, 2021, 41(7):980-987. doi:10.12122/j.issn.1673-4254.2021.07.03. | |
[13] | WEI Z, NIE G, YANG F, et al. Inhibition of ROS/NLRP3/Caspase-1 mediated pyroptosis attenuates cadmium-induced apoptosis in duck renal tubular epithelial cells[J]. Environ Pollut, 2020, 273:115919. doi:10.1016/j.envpol.2020.115919. |
[14] | HONG H, CHEUNG Y M, CAO X, et al. REV-ERBα agonist SR9009 suppresses IL-1β production in macrophages through BMAL1-dependent inhibition of inflammasome[J]. Biochem Pharmacol, 2021, 192:114701. doi:10.1016/j.bcp.2021.114701. |
[15] | SIES H, JONES D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nat Rev Mol Cell Biol, 2020, 21(7):363-383. doi:10.1038/s41580-020-0230-3. |
[16] | KASAI S, SHIMIZU S, TATARA Y, et al. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology[J]. Biomolecules, 2020, 10(2):320. doi:10.3390/biom10020320. |
[17] | 陈芳, 邹联洪, 刘协红, 等. NRF2减轻阿霉素诱导的心肌H9c2细胞氧化应激和溶酶体功能障碍[J]. 中国病理生理杂志, 2019, 35(8):1359-1364. |
CHEN F, ZOU L H, LIU X H, et al. NRF2 attenuates oxidative stress and lysosomal dysfunction in doxorubicin-induced H9C2 cells[J]. Chin J Pathophysiol, 2019, 35(8):1359-1364. doi:10.3969/j.issn.1000-4718.2019.08.003. | |
[18] | CHHUNCHHA B, KUBO E, SINGH D P. Clock protein BMAL1 and Nrf2 cooperatively control aging or oxidative response and redox homeostasis by regulating rhythmic expression of prdx6[J]. Cells, 2020, 9(8):1861. doi:10.3390/cells9081861. |
[19] | LIU X H, XIAO W, JIANG Y, et al. BMAL1 regulates the redox rhythm of HSPB1,and homooxidized HSPB1 attenuates the oxidative stress injury of cardiomyocytes[J]. Oxid Med Cell Longev, 2021, 2021:5542815. doi:10.1155/2021/5542815. |
[20] | EARLY J O, MENON D, WYSE C A, et al. Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2[J]. Proc Natl Acad Sci USA, 2018, 115(36):E8460-E8468. doi:10.1073/pnas.1800431115. |
[1] | LI Min, GONG Jian, WU Weiwei, LIU Qiao. Research progress on the role of Nrf2/HO-1 pathway in psoriasis [J]. Tianjin Medical Journal, 2024, 52(5): 552-556. |
[2] | XIANG Jinjie, LYU Maoxin, WANG Mengyue, ZHANG Kun, LI Hao. Molecular mechanisms of Ca2+-induced pyroptosis and adhesion changes of HK-2 cells in the formation of calcium-containing kidney stones [J]. Tianjin Medical Journal, 2024, 52(3): 250-255. |
[3] | CHEN Jing, WEI Yunjiao, LUO Chao, HUANG Lihua, CHEN Cheng, DUAN Shasha. The mechanism of Wumei pill on ulcerative colitis in mice based on Nrf2/ARE antioxidant stress pathway [J]. Tianjin Medical Journal, 2024, 52(3): 278-254. |
[4] | LI Yanping, WANG Xietao, SHI Libin, LIU Qiong. Influence of resveratrol on H2O2-induced ferroptosis in alveolar epithelial cells by regulating the Nrf2-GPX4 pathway [J]. Tianjin Medical Journal, 2023, 51(6): 568-572. |
[5] | LI Qiuchang, YAN Shunchang, MENG Yazhen, GU Yunxia, NING Qiaoming, LI Na, WANG Zhihua. Neuroprotective effects of dexmedetomidine on intracerebral hemorrhage of rats by Nrf2-GPX4 mediated iron death pathway [J]. Tianjin Medical Journal, 2022, 50(8): 817-821. |
[6] | CHEN Lixu, XIONG Jia, XIE Kun, ZHU Tingde, ZHONG Zhiying, GUAN Liang, PAN Yongping. Study on the mechanism of Fuzheng Huayu prescription drug-containing serum affecting the activation of activinA/smad signaling pathway in hepatic stellate cells [J]. Tianjin Medical Journal, 2022, 50(7): 707-712. |
[7] | CHEN Yu, SU Jianjun, HAN Yun, LI Ying, ZHANG Lunmin, YANG Yi, HUANG Bo△. Study on the protective effect of dimethyl fumarate on myocardial ischemia/reperfusion injury by regulating the iron death pathway mediated by Nrf2-GPX4 in rats [J]. Tianjin Medical Journal, 2022, 50(6): 601-607. |
[8] | HOU Wanmei, GUAN Jinfan, LIU Bingyuan, LIN Dongrong, ZHAO Yuanyu, ZHANG Juanzi, HAN Jiangquan. The role of Nrf2 in regulating AIM2 inflammation in cerebral ischemia reperfusion injury in rats [J]. Tianjin Medical Journal, 2022, 50(4): 368-374. |
[9] | ZHAI Xinxiang, DONG Hui, WANG Jing, WANG Yongxiang. Study on the protective mechanism of astragalus polysaccharides on functional activity of osteoblasts in ovariectomy rats [J]. Tianjin Medical Journal, 2022, 50(3): 265-269. |
[10] | CHEN Li, MA Yali, LI Benliang. The effects of exogenous hydrogen sulfide on cognitive function and intestinal barrier function through Nrf2/ARE/HO-1 pathway in schizophrenic rats [J]. Tianjin Medical Journal, 2022, 50(2): 143-149. |
[11] | HE Jing, SUN Xiaohui, YANG Li, WU Yuliang . Secretory clusterin attenuated hydrogen peroxide induced cardiomyocyte injury by inhibiting mitophagy #br# [J]. Tianjin Medical Journal, 2022, 50(2): 136-142. |
[12] | DONG Chao, LI Huayu, OU Haojie, SUN Jia, ZHANG Luyong, LIU Bing△. Fenofibrate improves acute lung injury induced by lipopolysaccharide [J]. Tianjin Medical Journal, 2022, 50(1): 59-66. |
[13] | ZHOU Ping, PEI Wen-di, SUN Yi-fan, YU Yang, JIN Dan△. The protective effect of ginsenoside Rg3 on oxidative stress injury induced by H2O2 in KGN cells#br# [J]. Tianjin Medical Journal, 2021, 49(9): 916-920. |
[14] | OU Hao-jie, SUN Jia, LI Hua-yu, DONG Chao, LIU Bing. RITA induces cell apoptosis of lung squamous carcinoma H226 via the ROS/Src/Stat3 patway [J]. Tianjin Medical Journal, 2021, 49(8): 785-790. |
[15] | YI Na, YUAN Li-li. Effects and mechanism of BMAL1 on H2O2-induced H9C2 cardiomyocyte injury [J]. Tianjin Medical Journal, 2021, 49(8): 791-795. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||