Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (2): 113-118.doi: 10.11958/20231064
• Cell and Molecular Biology • Next Articles
WANG Funing(), DAI Huibo, SHAN Yun, YU Manshu, SHENG Meixiao△(
)
Received:
2023-07-17
Revised:
2023-08-29
Published:
2024-02-15
Online:
2024-01-26
Contact:
△ E-mail: WANG Funing, DAI Huibo, SHAN Yun, YU Manshu, SHENG Meixiao. Study on the effect and mechanism of bone marrow mesenchymal stem cells on apoptosis of peritoneal mesothelial cells[J]. Tianjin Medical Journal, 2024, 52(2): 113-118.
CLC Number:
组别 | 增殖活力/% | 线粒体膜 电位水平 | 凋亡率/% |
---|---|---|---|
CON组 | 100.00±3.04 | 3.05±0.22 | 7.31±1.75 |
PDF组 | 62.00±1.36a | 1.03±0.06a | 54.42±0.88a |
PDF+BMSCs-CM组 | 78.24±2.15b | 1.74±0.16b | 27.36±1.14b |
F | 207.551** | 122.875** | 894.079** |
Tab.1 Comparison of relative proliferative activity, mitochondrial membrane potential and apoptosis rate of PMCs between the three groups
组别 | 增殖活力/% | 线粒体膜 电位水平 | 凋亡率/% |
---|---|---|---|
CON组 | 100.00±3.04 | 3.05±0.22 | 7.31±1.75 |
PDF组 | 62.00±1.36a | 1.03±0.06a | 54.42±0.88a |
PDF+BMSCs-CM组 | 78.24±2.15b | 1.74±0.16b | 27.36±1.14b |
F | 207.551** | 122.875** | 894.079** |
组别 | Bax/Bcl-2 | Cleaved Caspase-3/Caspase-3 |
---|---|---|
CON组 | 0.35±0.01 | 0.18±0.02 |
PDF组 | 0.82±0.08a | 0.30±0.02a |
PDF+BMSCs-CM组 | 0.44±0.06b | 0.20±0.03b |
F | 62.238** | 19.303** |
Tab.2 Comparison of expression levels of apoptosis-related proteins between the three groups
组别 | Bax/Bcl-2 | Cleaved Caspase-3/Caspase-3 |
---|---|---|
CON组 | 0.35±0.01 | 0.18±0.02 |
PDF组 | 0.82±0.08a | 0.30±0.02a |
PDF+BMSCs-CM组 | 0.44±0.06b | 0.20±0.03b |
F | 62.238** | 19.303** |
组别 | p-Raf/Raf | p-MEK/MEK | p-ERK/ERK |
---|---|---|---|
CON组 | 0.18±0.00 | 0.17±0.01 | 0.18±0.01 |
PDF组 | 0.34±0.03a | 0.32±0.04a | 0.29±0.01a |
PDF+BMSCs-CM组 | 0.22±0.02b | 0.22±0.02b | 0.21±0.01b |
F | 57.076** | 28.990** | 81.448** |
Tab.3 Comparison of expression levels of Raf/MEK/ERK signal pathway related proteins between the three groups
组别 | p-Raf/Raf | p-MEK/MEK | p-ERK/ERK |
---|---|---|---|
CON组 | 0.18±0.00 | 0.17±0.01 | 0.18±0.01 |
PDF组 | 0.34±0.03a | 0.32±0.04a | 0.29±0.01a |
PDF+BMSCs-CM组 | 0.22±0.02b | 0.22±0.02b | 0.21±0.01b |
F | 57.076** | 28.990** | 81.448** |
[1] | MASOLA V, BONOMINI M, BORRELLI S, et al. Fibrosis of peritoneal membrane as target of new therapies in peritoneal dialysis[J]. Int J Mol Sci, 2022, 23(9):4831. doi:10.3390/ijms23094831. |
[2] | WANG R, GUO T, LI J. Mechanisms of peritoneal mesothelial cells in peritoneal adhesion[J]. Biomolecules, 2022, 12(10):1498. doi:10.3390/biom12101498. |
[3] | ROUMELIOTIS S, DOUNOUSI E, SALMAS M, et al. Unfavorable effects of peritoneal dialysis solutions on the peritoneal membrane: the role of oxidative stress[J]. Biomolecules, 2020, 10(5):768. doi:10.3390/biom10050768. |
[4] | LOTFY A, ABOQUELLA N M, WANG H. Mesenchymal stromal/stem cell(MSC)-derived exosomes in clinical trials[J]. Stem Cell Res Ther, 2023, 14(1):66. doi:10.1186/s13287-023-03287-7. |
[5] | HOANG D M, PHAM P T, BACH T Q, et al. Stem cell-based therapy for human diseases[J]. Signal Transduct Target Ther, 2022, 7(1):272. doi:10.1038/s41392-022-01134-4. |
[6] | SUN J, ZHAO F, ZHANG W, et al. BMSCs and miR-124a ameliorated diabetic nephropathy via inhibiting notch signalling pathway[J]. J Cell Mol Med, 2018, 22(10):4840-4855. doi:10.1111/jcmm.13747. |
[7] | LIN M, LIU X, ZHENG H, et al. IGF-1 enhances BMSC viability,migration,and anti-apoptosis in myocardial infarction via secreted frizzled-related protein 2 pathway[J]. Stem Cell Res Ther, 2020, 11(1):22. doi:10.1186/s13287-019-1544-y. |
[8] | 赵君谊, 单云, 朱晓琳, 等. 黄芪多糖对高糖腹透液诱导HMrSV5细胞凋亡的影响[J]. 中华中医药学刊, 2020, 38(10):113-117,280-281. |
ZHAO J Y, SHAN Y, ZHU X L, et al. Effect of astragalus polysaccharide on apoptosis of hmrsv5 induced by peritoneal dialysis solution[J]. Chin Arch Tradit Chin Med, 2020, 38(10):113-117,280-281. doi:10.13193/j.issn.1673-7717.2020.10.026. | |
[9] | TEITELBAUM I. Peritoneal dialysis[J]. N Engl J Med, 2021, 385(19):1786-1795. doi:10.1056/NEJMra2100152. |
[10] | HUANG Q, SUN Y, PENG L, et al. Extracellular vesicle-packaged ILK from mesothelial cells promotes fibroblast activation in peritoneal fibrosis[J]. J Extracell Vesicles, 2023, 12(7):e12334. doi:10.1002/jev2.12334. |
[11] | HU Q, XIA X, KANG X, et al. A review of physiological and cellular mechanisms underlying fibrotic postoperative adhesion[J]. Int J Biol Sci, 2021, 17(1):298-306. doi:10.7150/ijbs.54403. |
[12] | ZHOU T, YUAN Z, WENG J, et al. Challenges and advances in clinical applications of mesenchymal stromal cells[J]. J Hematol Oncol, 2021, 14(1):24. doi:10.1186/s13045-021-01037-x. |
[13] | ZHOU L, ZHU H, BAI X, et al. Potential mechanisms and therapeutic targets of mesenchymal stem cell transplantation for ischemic stroke[J]. Stem Cell Res Ther, 2022, 13(1):195. doi:10.1186/s13287-022-02876-2. |
[14] | SQUASSONI S D, SEKIYA E J, FISS E, et al. Autologous infusion of bone marrow and mesenchymal stromal cells in patients with chronic obstructive pulmonary disease: phase I randomized clinical trial[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16:3561-3574. doi:10.2147/copd.S332613. |
[15] | CHEN T Y, LIU C H, CHEN T H, et al. Conditioned media of adipose-derived stem cells suppresses sidestream cigarette smoke extract induced cell death and epithelial-mesenchymal transition in lung epithelial cells[J]. Int J Mol Sci, 2021, 22(21):12069. doi:10.3390/ijms222112069. |
[16] | BEHZADIFARD M, ABOUTALEB N, DOLATSHAHI M, et al. Neuroprotective effects of conditioned medium of mesenchymal stem cells (MSC-CM) as a therapy for ischemic stroke recovery: a systematic review[J]. Neurochem Res, 2023, 48(5):1280-1292. doi:10.1007/s11064-022-03848-x. |
[17] | CALCAT I C S, SANZ-NOGUÉS C, O'BRIEN T. When origin matters: properties of mesenchymal stromal cells from different sources for clinical translation in kidney disease[J]. Front Med (Lausanne), 2021, 8:728496. doi:10.3389/fmed.2021.728496. |
[18] | WANG H, WANG J, LIU T, et al. Stem cell-derived exosomal MicroRNAs: potential therapies in diabetic kidney disease[J]. Biomed Pharmacother, 2023, 164:114961. doi:10.1016/j.biopha.2023.114961. |
[19] | LI S, STÖCKL S, LUKAS C, et al. Curcumin-primed human BMSC-derived extracellular vesicles reverse IL-1β-induced catabolic responses of OA chondrocytes by upregulating miR-126-3p[J]. Stem Cell Res Ther, 2021, 12(1):252. doi:10.1186/s13287-021-02317-6. |
[20] | WEI B, JI M, LIN Y, et al. Mitochondrial transfer from bone mesenchymal stem cells protects against tendinopathy both in vitro and in vivo[J]. Stem Cell Res Ther, 2023, 14(1):104. doi:10.1186/s13287-023-03329-0. |
[21] | RAMIL-GÓMEZ O, LÓPEZ-PARDO M, FERNÁNDEZ-RODRÍGUEZ J A, et al. Involvement of mitochondrial dysfunction in the inflammatory response in human mesothelial cells from peritoneal dialysis effluent[J]. Antioxidants (Basel), 2022, 11(11):2184. doi:10.3390/antiox11112184. |
[22] | GREEN D R. The mitochondrial pathway of apoptosis: part I: MOMP and beyond[J]. Cold Spring Harb Perspect Biol, 2022, 14(5):a041038. doi:10.1101/cshperspect.a041038. |
[23] | WU P K, BECKER A, PARK J I. Growth inhibitory signaling of the Raf/MEK/ERK pathway[J]. Int J Mol Sci, 2020, 21(15):5436. doi:10.3390/ijms21155436. |
[24] | ZHONG Y, LI M Y, HAN L, et al. Galangin inhibits programmed cell death-ligand 1 expression by suppressing STAT3 and MYC and enhances T cell tumor-killing activity[J]. Phytomedicine, 2023, 116:154877. doi:10.1016/j.phymed.2023.154877. |
[25] | KUMARI S, DHAPOLA R, REDDY D H. Apoptosis in Alzheimer's disease: insight into the signaling pathways and therapeutic avenues[J]. Apoptosis, 2023, 28(7/8):943-957. doi:10.1007/s10495-023-01848-y. |
[26] | LIU Y, CHEN J, LIANG H, et al. Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling[J]. Stem Cell Res Ther, 2022, 13(1):258. doi:10.1186/s13287-022-02927-8. |
[27] | LANG J, YANG C, LIU L, et al. High glucose activates ERK1/2 to stabilize AP1 and increase MMP9 expression in diabetic foot ulcers[J]. Exp Cell Res, 2021, 403(1):112550. doi:10.1016/j.yexcr.2021.112550. |
[28] | PAN L, ZHANG X, GAO Q. Histatin-1 alleviates high-glucose injury to skin keratinocytes through MAPK signaling pathway[J]. J Cosmet Dermatol, 2022, 21(11):6281-6291. doi:10.1111/jocd.15235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||