Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (6): 663-668.doi: 10.11958/20231554
• Review • Previous Articles Next Articles
MU Jingran(), LUO Yan, LIANG Xuan, XU Tao, ZENG Junwei, LIU Xiaohong(
)
Received:
2023-10-11
Revised:
2023-11-20
Published:
2024-06-15
Online:
2024-06-06
Contact:
△E-mail: MU Jingran, LUO Yan, LIANG Xuan, XU Tao, ZENG Junwei, LIU Xiaohong. Research progress on the activation of complement system is involved in the pathogenesis of Alzheimer's disease[J]. Tianjin Medical Journal, 2024, 52(6): 663-668.
CLC Number:
[1] | 邵蕊, 李岱, 韩召利, 等. 基于老年综合评估的个体化康复训练对阿尔茨海默病患者认知功能、风险防范的影响[J]. 天津医药, 2021, 49(8):847-851. |
SHAO R, LI D, HAN Z L, et al. Effects of individualized rehabilitation training based on comprehensive geriatric assessment on cognitive function and risk prevention of patients with Alzheimer's disease[J]. Tianjin Med J, 2021, 49(8):847-851. doi:10.11958/20210643. | |
[2] | YANG J, WISE L, FUKUCHI K I. TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in Alzheimer's disease[J]. Front Immunol, 2020, 11:724. doi:10.3389/fimmu.2020.00724. |
[3] | YIN C, ACKERMANN S, MA Z, et al. ApoE attenuates unresolvable inflammation by complex formation with activated C1q[J]. Nat Med, 2019, 25(3):496-506. doi:10.1038/s41591-018-0336-8. |
[4] | SHAH A, KISHORE U, SHASTRI A. Complement system in Alzheimer's disease[J]. Int J Mol Sci, 2021, 22(24):13647. doi:10.3390/ijms222413647. |
[5] | FATOBA O, ITOKAZU T, YAMASHITA T. Complement cascade functions during brain development and neurodegeneration[J]. FEBS J, 2022, 289(8):2085-2109. doi:10.1111/febs.15772. |
[6] | CHEN W T, LU A, CRAESSAERTS K, et al. Spatial transcriptomics and in situ sequencing to study Alzheimer's disease[J]. Cell, 2020, 182(4):976-991.e19. doi:10.1016/j.cell.2020.06.038. |
[7] | WU T, DEJANOVIC B, GANDHAM V D, et al. Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy[J]. Cell Rep, 2019, 28(8):2111-2123.e6. doi:10.1016/j.celrep.2019.07.060. |
[8] | LIAN H, YANG L, COLE A, et al. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease[J]. Neuron, 2015, 85(1):101-115. doi:10.1016/j.neuron.2014.11.018. |
[9] | LITVINCHUK A, WAN Y W, SWARTZLANDER D B, et al. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer's disease[J]. Neuron, 2018, 100(6):1337-1353.e5. doi:10.1016/j.neuron.2018.10.031. |
[10] | ZHANG D F, FAN Y, XU M, et al. Complement C7 is a novel risk gene for Alzheimer's disease in Han Chinese[J]. Natl Sci Rev, 2019, 6(2):257-274. doi:10.1093/nsr/nwy127. |
[11] | YUAN H, DU L, GE P. Complement receptor 1 genetic polymorphism contributes to sporadic Alzheimer's disease susceptibility in Caucasians: a meta-analysis[J]. Biosci Rep, 2020, 40(6):BSR20200321. doi:10.1042/BSR20200321. |
[12] | MAHMOUDI R, FELDMAN S, KISSERLI A, et al. Inherited and acquired decrease in complement receptor 1(CR1)density on red blood cells associated with high levels of soluble CR1 in Alzheimer's disease[J]. Int J Mol Sci, 2018, 19(8):2175. doi:10.3390/ijms19082175. |
[13] | CAI H, PANG Y, WANG Q, et al. Proteomic profiling of circulating plasma exosomes reveals novel biomarkers of Alzheimer's disease[J]. Alzheimers Res Ther, 2022, 14(1):181. doi:10.1186/s13195-022-01133-1. |
[14] | GOETZL E J, SCHWARTZ J B, ABNER E L, et al. High complement levels in astrocyte-derived exosomes of Alzheimer disease[J]. Ann Neurol, 2018, 83(3):544-552. doi:10.1002/ana.25172. |
[15] | NOGUERAS-ORTIZ C J, MAHAIRAKI V, DELGADO-PERAZA F, et al. Astrocyte- and neuron-derived extracellular vesicles from Alzheimer's disease patients effect complement-mediated neurotoxicity[J]. Cells, 2020, 9(7):1618. doi:10.3390/cells9071618. |
[16] | FLORENTINUS-MEFAILOSKI A, BOWDEN P, SCHELTENS P, et al. The plasma peptides of Alzheimer's disease[J]. Clin Proteomics, 2021, 18(1):17. doi:10.1186/s12014-021-09320-2. |
[17] | BONHAM L W, DESIKAN R S, YOKOYAMA J S, et al. The relationship between complement factor C3,APOE ε4,amyloid and tau in Alzheimer's disease[J]. Acta Neuropathol Commun, 2016, 4(1):65. doi:10.1186/s40478-016-0339-y. |
[18] | LU G, LIU W, HUANG X, et al. Complement factor H levels are decreased and correlated with serum C-reactive protein in late-onset Alzheimer's disease[J]. Arq Neuropsiquiatr, 2020, 78(2):76-80. doi:10.1590/0004-282X20190151. |
[19] | 王翠, 杨畅, 金玉, 等. 木犀草苷对阿尔茨海默病模型细胞凋亡和炎性因子表达的研究[J]. 天津医药, 2023, 51(7):701-706. |
WANG C, YANG C, JIN Y, et al. Study of cynaroside on apoptosis and expression of inflammatory factor in model cells of Alzheimer's disease[J]. Tianjin Med J, 2023, 51(7):701-706. doi:10.11958/20221922. | |
[20] | CHERNYAEVA L, RATTI G, TEIRILÄ L, et al. Reduced binding of ApoE4 to complement factor H promotes amyloid-β oligomerization and neuroinflammation[J]. EMBO Rep, 2023, 24(7):e56467. doi:10.15252/embr.202256467. |
[21] | BISHT K, SHARMA K, TREMBLAY M È. Chronic stress as a risk factor for Alzheimer's disease:Roles of microglia-mediated synaptic remodeling,inflammation,and oxidative stress[J]. Neurobiol Stress, 2018, 9:9-21. doi:10.1016/j.ynstr.2018.05.003. |
[22] | ROY E R, WANG B, WAN Y W, et al. Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease[J]. J Clin Invest, 2020, 130(4):1912-1930. doi:10.1172/JCI133737. |
[23] | LIAN H, LITVINCHUK A, CHIANG A C, et al. Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer's disease[J]. J Neurosci, 2016, 36(2):577-589. doi:10.1523/JNEUROSCI.2117-15.2016. |
[24] | GUAN P P, GE T Q, WANG P. As a potential therapeutic target,C1q induces synapse loss via inflammasome-activating apoptotic and mitochondria impairment mechanisms in Alzheimer's disease[J]. J Neuroimmune Pharmacol, 2023, 18(3):267-284. doi:10.1007/s11481-023-10076-9. |
[25] | AN X Q, XI W, GU C Y, et al. Complement protein C5a enhances the β-amyloid-induced neuro-inflammatory response in microglia in Alzheimer's disease[J]. Med Sci(Paris), 2018,34 Focus issue F1:116-120. doi:10.1051/medsci/201834f120. |
[26] | KRETZSCHMAR G C, BUMILLER-BINI V, GASPARETTO FILHO M A, et al. Neutrophil extracellular traps:A perspective of neuroinflammation and complement activation in Alzheimer's disease[J]. Front Mol Biosci, 2021, 8:630869. doi:10.3389/fmolb.2021.630869. |
[27] | HAO X, LI Z, LI W, et al. Periodontal infection aggravates c1q-mediated microglial activation and synapse pruning in Alzheimer's mice[J]. Front Immunol, 2022, 13:816640. doi:10.3389/fimmu.2022.816640. |
[28] | WANG C, YUE H, HU Z, et al. Microglia mediate forgetting via complement-dependent synaptic elimination[J]. Science, 2020, 367(6478):688-694. doi:10.1126/science.aaz2288. |
[29] | QIN Q, WANG M, YIN Y, et al. The Specific mechanism of TREM2 regulation of synaptic clearance in Alzheimer's disease[J]. Front Immunol, 2022, 13:845897. doi:10.3389/fimmu.2022.845897. |
[30] | SPURRIER J, NICHOLSON L, FANG X T, et al. Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1Q[J]. Sci Transl Med, 2022, 14(647):eabi8593. doi:10.1126/scitranslmed.abi8593. |
[31] | CARPANINI S M, TORVELL M, BEVAN R J, et al. Terminal complement pathway activation drives synaptic loss in Alzheimer's disease models[J]. Acta Neuropathol Commun, 2022, 10(1):99. doi:10.1186/s40478-022-01404-w. |
[32] | LEE H E, LIM D, LEE J Y, et al. Recent tau-targeted clinical strategies for the treatment of Alzheimer's disease[J]. Future Med Chem, 2019, 11(15):1845-1848. doi:10.4155/fmc-2019-0151. |
[33] | HU J, YANG Y, WANG M, et al. Complement C3a receptor antagonist attenuates tau hyperphosphorylation via glycogen synthase kinase 3β signaling pathways[J]. Eur J Pharmacol, 2019, 850:135-140. doi:10.1016/j.ejphar.2019.02.020. |
[34] | YAO Y, CHANG Y, LI S, et al. Complement C3a receptor antagonist alleviates tau pathology and ameliorates cognitive deficits in P301S mice[J]. Brain Res Bull, 2023, 200:110685. doi:10.1016/j.brainresbull.2023.110685. |
[35] | JUN G R, YOU Y, ZHU C, et al. Protein phosphatase 2A and complement component 4 are linked to the protective effect of APOE ɛ2 for Alzheimer's disease[J]. Alzheimers Dement, 2022, 18(11):2042-2054. doi:10.1002/alz.12607. |
[36] | JEVTIC S, SENGAR A S, SALTER M W, et al. The role of the immune system in Alzheimer disease:Etiology and treatment[J]. Ageing Res Rev, 2017, 40:84-94. doi:10.1016/j.arr.2017.08.005. |
[37] | HANSEN D V, HANSON J E, SHENG M. Microglia in Alzheimer's disease[J]. J Cell Biol, 2018, 217(2):459-472. doi:10.1083/jcb.201709069. |
[38] | LANDLINGER C, OBERLEITNER L, GRUBER P, et al. Active immunization against complement factor C5a:A new therapeutic approach for Alzheimer's disease[J]. J Neuroinflammation, 2015, 12:150. doi:10.1186/s12974-015-0369-6. |
[39] | DEJANOVIC B, HUNTLEY M A, DE MAZIÈRE A, et al. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies[J]. Neuron, 2018, 100(6):1322-1336.e7. doi:10.1016/j.neuron.2018.10.014. |
[40] | HETTMANN T, GILLIES S D, KLEINSCHMIDT M, et al. Development of the clinical candidate PBD-C06,a humanized pGlu3-Aβ-specific antibody against Alzheimer's disease with reduced complement activation[J]. Sci Rep, 2020, 10(1):3294. doi:10.1038/s41598-020-60319-5. |
[41] | CHEN H, DENG C, MENG Z, et al. Effects of catalpol on Alzheimer's disease and its mechanisms[J]. Evid Based Complement Alternat Med, 2022,2022:2794243. doi:10.1155/2022/2794243. |
[1] | JIA Xirui, LIU Lijie. The role and research progress of microglia in sepsis related encephalopathy [J]. Tianjin Medical Journal, 2024, 52(5): 557-560. |
[2] | WANG Cui, YANG Chang, JIN Yu, GAO Mi, ZHANG Wen, WANG Qiong, JIN Haitao. Study of cynaroside on apoptosis and expression of inflammatory factor in model cells of Alzheimer’s disease [J]. Tianjin Medical Journal, 2023, 51(7): 701-706. |
[3] | LI Xiaoxiao, BAI Yanjie, WANG Yan, ZHANG Yongchuang, CHEN Limin, CHEN Shuying. Research progress on the relationship between high fat diet and cognitive impairment [J]. Tianjin Medical Journal, 2023, 51(4): 441-444. |
[4] | CHEN Jun, ZHENG Jinhao, CHEN Jialiang, CHEN Bo. Detection and clinical significance of serum GGT and CTHRC1 expression levels in patients with Alzheimer's disease [J]. Tianjin Medical Journal, 2023, 51(2): 216-220. |
[5] | YAN Chunxiao, LI Peiyue, ZHENG Qimi, ZOU Xiao, LI Jianbo. The serum expression level and clinical significance of Apelin13 and FKBP5 in patients with Alzheimer's disease [J]. Tianjin Medical Journal, 2022, 50(10): 1088-1092. |
[6] | WAN Qi, XIE Ye, WANG Rong, LUO Yan, ZENG Junwei. Research progress on the role of Gal-3 in Alzheimer’s disease [J]. Tianjin Medical Journal, 2022, 50(10): 1115-1120. |
[7] | SHAO Rui, LI Dai, HAN Zhao-li, ZHANG Ming-yi, LEI Ping. Effects of individualized rehabilitation training based on comprehensive geriatric assessment on cognitive function and risk prevention of patients with Alzheimer's disease [J]. Tianjin Medical Journal, 2021, 49(8): 847-851. |
[8] | SONG Jun-jie, FAN Jun-chao△, CHEN Ying, CHEN Yong. Effects of low-dose ketamine on neurological function and inflammation factors of MPTP induced Parkinson's disease mice [J]. Tianjin Medical Journal, 2021, 49(5): 476-482. |
[9] | ZHANG Ning, XIE Lu-shuang, LIU Qi, LYU Pei-ran. Research progress on the relationship between glial cells and synaptic plasticity [J]. Tianjin Medical Journal, 2021, 49(12): 1340-1344. |
[10] | LIANG Xiao-li, GUI Huan, LIU Cheng-xi, ZHANG Chao, XU Shan, ZHANG Yi, ZHU Zhao-qiong. Dexmedetomidine alleviates the long-term synaptic plasticity damage induced by repeated exposure of sevoflurane in neonatal rats [J]. Tianjin Medical Journal, 2019, 47(3): 250-255. |
[11] | CHEN Yan-lin, GUO Ai, PENG Peng, ZHOU Mei, GU Zhong-ya, LIU Xiao-han, ZHANG Meng-zhe, DENG Yan-qiu. The protective effects of dulaglutide on AD-like neurodegenerative changes [J]. Tianjin Medical Journal, 2018, 46(7): 673-677. |
[12] | ZHANG Xue-zhu, FU Yu, JIA Yu-jie, HAN Jing-xian, NIE Kun△. Proteomic analysis of lipid rafts reveals the key effects of the accelerated-aging on hippocampus in SAMP8 mice [J]. Tianjin Med J, 2018, 46(10): 1050-1054. |
[13] | HUO Hui-yong1, LIU Bing1, CAO Ling1, ZHAO Xian1, CAO Yan1, XUE Jing1, WANG Ru-ke2, LI Jun- tao1△. Intervention effect of CD147 on learning and memory ability in rat model of Alzheimer’s disease [J]. Tianjin Med J, 2018, 46(1): 38-41. |
[14] | CHEN Shu-yi1, GUO Ai1, CHEN Yan-lin1, FU Rong-xia2, ZHAO Gang3, PENG Peng1, SONG Qi-jun1, DENG Yan-qiu1△. The protective effects of dipeptidyl peptidase-4 inhibitor on AD-like neurodegenerative changes [J]. Tianjin Med J, 2017, 45(4): 342-348. |
[15] | SUN Manli, DENG Haifeng, LI Minghua, LIU Guoliang, CHANG Quanzhong△. Effects of minocycline on the cognition and expression of BDNF, Bcl-2 and Bax in hippocampus of Alzheimer’ s disease model rats [J]. Tianjin Med J, 2016, 44(9): 1088-1091. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||