[1] |
ABRAMS D, MACLAREN G, LORUSSO R, et al. Extracorporeal cardiopulmonary resuscitation in adults: evidence and implications[J]. Intensive Care Med, 2022, 48(1):1-15. doi:10.1007/s00134-021-06514-y.
|
[2] |
GAO J, ZHAO X, HU S, et al. Gut microbial DL-endopeptidase alleviates Crohn's disease via the NOD2 pathway[J]. Cell Host Microbe, 2022, 30(10):1435-1449.e9. doi:10.1016/j.chom.2022.08.002.
|
[3] |
ZHOU L, HE X, WANG L, et al. Palmitoylation restricts SQSTM1/p62-mediated autophagic degradation of NOD2 to modulate inflammation[J]. Cell Death Differ, 2022, 29(8):1541-1551. doi:10.1038/s41418-022-00942-z.
|
[4] |
HUANG K, WANG Z, GU Y, et al. Glibenclamide is comparable to target temperature management in improving survival and neurological outcome after asphyxial cardiac arrest in rats[J]. J Am Heart Assoc, 2016, 5(7):e003465. doi:10.1161/JAHA.116.003465.
|
[5] |
SANDRONI C, CRONBERG T, SEKHON M. Brain injury after cardiac arrest:pathophysiology, treatment,and prognosis[J]. Intensive Care Med, 2021, 47(12):1393-1414. doi:10.1007/s00134-021-06548-2.
|
[6] |
CUNNINGHAM C A, COPPLER P J, SKOLNIK A B. The immunology of the post-cardiac arrest syndrome[J]. Resuscitation, 2022, 179:116-123. doi:10.1016/j.resuscitation.2022.08.013.
|
[7] |
LAGEBRANT A, LANG M, NIELSEN N, et al. Brain injury markers in blood predict signs of hypoxic ischaemic encephalopathy on head computed tomography after cardiac arrest[J]. Resuscitation, 2023, 184:109668. doi:10.1016/j.resuscitation.2022.12.006.
|
[8] |
温兆孟, 刘文虎, 梁金, 等. 颅脑创伤后泛素-蛋白酶体系统和自噬系统机制研究进展[J]. 中国现代神经疾病杂志, 2023, 23(10):889-895.
|
|
WEN Z M, LIU W H, LIANG J, et al. Research progress on the interaction mechanism between ubiquitin-proteasome system and autophagy system after traumatic brain injury[J]. Chin J Contemp Neurosurg, 2023, 23(10):889-895. doi:10.3969/j.issn.1672-6731.2023.10.004.
|
[9] |
SANDRONI C, NATALINI D, NOLANO J P. Temperature control after cardiac arrest[J]. Crit Care, 2022, 26(1):361. doi:10.1186/s13054-022-04238-z.
|
[10] |
WANG Y, ZHANG S, HE H, et al. Repositioning lomitapide to block ZDHHC5-dependant palmitoylation on SSTR5 leads to anti-proliferation effect in preclinical pancreatic cancer models[J]. Cell Death Discov, 2023, 9(1):60. doi:10.1038/s41420-023-01359-4.
|
[11] |
BERCHTOLD L A, STØRLING Z M, ORTIS F, et al. Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and beta-cell apoptosis[J]. Proc Natl Acad Sci U S A, 2011, 108(37):E681-688. doi:10.1073/pnas.1104384108.
|
[12] |
MALGAPO M, LINDER M E. Substrate recruitment by zDHHC protein acyltransferases[J]. Open Biol, 2021, 11(4):210026. doi:10.1098/rsob.210026.
|
[13] |
GEDIK H, NGUYEN T H, PETERSON R E, et al. Identifying potential risk genes and pathways for neuropsychiatric and substance use disorders using intermediate molecular mediator information[J]. Front Genet, 2023, 14:1191264. doi:10.3389/fgene.2023.1191264.
|
[14] |
MECKLER X, ROSEMAN J, DAS P, et al. Reduced Alzheimer's disease β-amyloid deposition in transgenic mice expressing S-palmitoylation-deficient APH1aL and nicastrin[J]. J Neurosci, 2010, 30(48):16160-16169. doi:10.1523/JNEUROSCI.4436-10.2010.
|
[15] |
WANG B, LIU X, MENG X. miR-96-5p enhances cell proliferation and invasion via targeted regulation of ZDHHC5 in gastric cancer[J]. Biosci Rep, 2020, 40(4):BSR20191845.
|
[16] |
谷子, 唐勇, 周程继, 等. 棕榈酰化修饰的NOD_2在失血性休克动物模型中的作用[J]. 天津医药, 2022, 50(10):1050-1055.
|
|
GU Z, TANG Y, ZHOU C J, et al. The role of palmitoylated NOD2 in animal model of hemorrhagic shock[J]. Tianjin Med J, 2022, 50(10):1050-1055. doi:10.11958/20212779.
|
[17] |
MA Y, LIU H, OU Z, et al. DHHC5 facilitates oligodendrocyte development by palmitoylating and activating STAT3[J]. Glia, 2022, 70(2):379-392. doi:10.1002/glia.24113.
|
[18] |
LU Y, ZHENG Y, COYAUD É, et al. Palmitoylation of NOD1 and NOD2 is required for bacterial sensing[J]. Science, 2019, 366(6464):460-467. doi:10.1126/science.aau6391.
|
[19] |
NAYAR S, MORRISON J K, GIRI M, et al. A myeloid-stromal niche and gp130 rescue in NOD2-driven Crohn's disease[J]. Nature, 2021, 593(7858):275-281. doi:10.1038/s41586-021-03484-5.
|
[20] |
MATSUDA T, KAMBE N, UEKI Y, et al. Clinical characteristics and treatment of 50 cases of Blau syndrome in Japan confirmed by genetic analysis of the NOD2 mutation[J]. Ann Rheum Dis, 2020, 79(11):1492-1499. doi:10.1136/annrheumdis-2020-217320.
|
[21] |
LI Y, WANG Z. Interleukin 32 participates in cardiomyocyte-induced oxidative stress,inflammation and apoptosis during hypoxia/reoxygenation via the NOD2/NOX2/MAPK signaling pathway[J]. Exp Ther Med, 2022, 24(3):567. doi:10.3892/etm.2022.11504.
|
[22] |
SINGH K, HAN K, TILVE S, et al. Parkin targets NOD2 to regulate astrocyte endoplasmic reticulum stress and inflammation[J]. Glia, 2018, 66(11):2427-2437. doi:10.1002/glia.23482.
|
[23] |
SHI C X, WANG Y, CHEN Q, et al. Extracellular histone H3 induces pyroptosis during sepsis and may act through NOD2 and VSIG4/NLRP3 pathways[J]. Front Cell Infect Microbiol, 2020, 10:196. doi:10.3389/fcimb.2020.00196.
|
[24] |
ZHENG C, ZHU Z, WENG S, et al. NOD2 silencing promotes cell apoptosis and inhibits drug resistance in chronic lymphocytic leukemia by inhibiting the NF-κB signaling pathway[J]. J Biochem Mol Toxicol, 2023, 37(12):e23510. doi:10.1002/jbt.23510.
|
[25] |
LIU H, WEI X, KONG L, et al. NOD2 is involved in the inflammatory response after cerebral ischemia-reperfusion injury and triggers NADPH oxidase 2-derived reactive oxygen species[J]. Int J Biol Sci, 2015, 11(5):525-535. doi:10.7150/ijbs.10927.
|