Tianjin Medical Journal ›› 2025, Vol. 53 ›› Issue (5): 492-497.doi: 10.11958/20242358
• Clinical Research • Previous Articles Next Articles
DU Lingyun1(), WANG Yaowu1, REN Nan2,△(
)
Received:
2024-12-25
Revised:
2025-03-04
Published:
2025-05-15
Online:
2025-05-28
Contact:
△ E-mail:422833214@qq.com
DU Lingyun, WANG Yaowu, REN Nan. Prognostic value of PRMT2, TRAF2 and metastasis-related gene in renal clear cell carcinoma[J]. Tianjin Medical Journal, 2025, 53(5): 492-497.
CLC Number:
基因名称 | 引物序列 (5′→3′) | 产物 大小/bp |
---|---|---|
PRMT2 | 上游:CCCAGAAGTGAATCGCAGGG | 174 |
下游TGCAGTGGTTTGTCTCAGGATA | ||
TRAF2 | 上游ACATTCCGGCAAACCATGTG | 192 |
下游GGATGACTTTATCCGTCAGGGA | ||
N-cad | 上游GAGGAGCAGTTACGGTCTGTG | 101 |
下游TCCTTTCCTTAGCTGACACTTGT | ||
E-cad | 上游CGAGAGCTACACGTTCACGG | 184 |
下游GGGTGTCGAGGGAAAAATAGG | ||
VEGFA | 上游GGCTGGCAACATAACAGAGAA | 173 |
下游CCCCACATCTATACACACCTCC | ||
VEGFC | 上游ATGTGTGTCCGTCTACAGATGT | 125 |
下游GGAAGTGTGATTGGCAAAACTGA | ||
GAPDH | 上游TCCCTGGAGTTGCTACAGC | 144 |
下游AGGCGGAGCACAGGTACTT |
Tab.1 Primer sequence
基因名称 | 引物序列 (5′→3′) | 产物 大小/bp |
---|---|---|
PRMT2 | 上游:CCCAGAAGTGAATCGCAGGG | 174 |
下游TGCAGTGGTTTGTCTCAGGATA | ||
TRAF2 | 上游ACATTCCGGCAAACCATGTG | 192 |
下游GGATGACTTTATCCGTCAGGGA | ||
N-cad | 上游GAGGAGCAGTTACGGTCTGTG | 101 |
下游TCCTTTCCTTAGCTGACACTTGT | ||
E-cad | 上游CGAGAGCTACACGTTCACGG | 184 |
下游GGGTGTCGAGGGAAAAATAGG | ||
VEGFA | 上游GGCTGGCAACATAACAGAGAA | 173 |
下游CCCCACATCTATACACACCTCC | ||
VEGFC | 上游ATGTGTGTCCGTCTACAGATGT | 125 |
下游GGAAGTGTGATTGGCAAAACTGA | ||
GAPDH | 上游TCCCTGGAGTTGCTACAGC | 144 |
下游AGGCGGAGCACAGGTACTT |
组别 | PRMT2 | TRAF2 | N-cad |
---|---|---|---|
癌旁组织 | 0.84±0.22 | 1.02±0.33 | 1.14±0.32 |
癌组织 | 2.01±0.38 | 2.44±0.42 | 3.21±0.52 |
t | 27.947** | 27.883** | 35.557** |
组别 | E-cad | VEGFA | VEGFC |
癌旁组织 | 1.11±0.24 | 0.93±0.28 | 0.82±0.21 |
癌组织 | 0.68±0.15 | 2.85±0.36 | 3.91±0.50 |
t | 15.935** | 44.154** | 59.760** |
Tab.2 Expression levels of PRMT2 mRNA, TRAF2 mRNA and metastasis related genes in cancer tissue and adjacent tissue
组别 | PRMT2 | TRAF2 | N-cad |
---|---|---|---|
癌旁组织 | 0.84±0.22 | 1.02±0.33 | 1.14±0.32 |
癌组织 | 2.01±0.38 | 2.44±0.42 | 3.21±0.52 |
t | 27.947** | 27.883** | 35.557** |
组别 | E-cad | VEGFA | VEGFC |
癌旁组织 | 1.11±0.24 | 0.93±0.28 | 0.82±0.21 |
癌组织 | 0.68±0.15 | 2.85±0.36 | 3.91±0.50 |
t | 15.935** | 44.154** | 59.760** |
指标 | PRMT2 | TRAF2 |
---|---|---|
N-cad | 0.815** | 0.761** |
E-cad | -0.715** | -0.781** |
VEGFA | 0.701** | 0.790** |
VEGFC | 0.697** | 0.681** |
表3 Correlation between PRMT2 mRNA, TRAF2 mRNA and metastasis related genes in cancer tissue
指标 | PRMT2 | TRAF2 |
---|---|---|
N-cad | 0.815** | 0.761** |
E-cad | -0.715** | -0.781** |
VEGFA | 0.701** | 0.790** |
VEGFC | 0.697** | 0.681** |
指标 | n | PRMT2阳性 | χ2 | TRAF2阳性 | χ2 |
---|---|---|---|---|---|
年龄 | |||||
<60岁 | 43 | 25(58.14) | 0.922 | 24(55.81) | 2.902 |
≥60岁 | 67 | 45(67.16) | 48(71.64) | ||
性别 | |||||
男性 | 70 | 46(65.71) | 0.359 | 47(67.14) | 0.243 |
女性 | 40 | 24(60.00) | 25(62.50) | ||
肿瘤最大直径 | |||||
<5 cm | 42 | 26(61.91) | 0.088 | 24(57.14) | 2.076 |
≥5 cm | 68 | 44(64.71) | 48(70.59) | ||
TNM分期 | |||||
Ⅰ—Ⅱ期 | 66 | 32(48.49) | 16.369** | 35(53.03) | 11.264** |
Ⅲ期 | 44 | 38(86.36) | 37(84.09) | ||
Furhrman病理分级 | |||||
Ⅰ—Ⅱ级 | 59 | 35(59.32) | 1.023 | 35(59.32) | 2.117 |
Ⅲ—Ⅳ级 | 51 | 35(68.63) | 37(72.55) | ||
淋巴结转移 | |||||
有 | 14 | 9(64.29) | 0.003 | 10(71.43) | 0.253 |
无 | 96 | 61(63.54) | 62(64.58) |
Tab.4 Relationship between PRMT2, TRAF2 and clinicopathological features of ccRCC
指标 | n | PRMT2阳性 | χ2 | TRAF2阳性 | χ2 |
---|---|---|---|---|---|
年龄 | |||||
<60岁 | 43 | 25(58.14) | 0.922 | 24(55.81) | 2.902 |
≥60岁 | 67 | 45(67.16) | 48(71.64) | ||
性别 | |||||
男性 | 70 | 46(65.71) | 0.359 | 47(67.14) | 0.243 |
女性 | 40 | 24(60.00) | 25(62.50) | ||
肿瘤最大直径 | |||||
<5 cm | 42 | 26(61.91) | 0.088 | 24(57.14) | 2.076 |
≥5 cm | 68 | 44(64.71) | 48(70.59) | ||
TNM分期 | |||||
Ⅰ—Ⅱ期 | 66 | 32(48.49) | 16.369** | 35(53.03) | 11.264** |
Ⅲ期 | 44 | 38(86.36) | 37(84.09) | ||
Furhrman病理分级 | |||||
Ⅰ—Ⅱ级 | 59 | 35(59.32) | 1.023 | 35(59.32) | 2.117 |
Ⅲ—Ⅳ级 | 51 | 35(68.63) | 37(72.55) | ||
淋巴结转移 | |||||
有 | 14 | 9(64.29) | 0.003 | 10(71.43) | 0.253 |
无 | 96 | 61(63.54) | 62(64.58) |
变量 | β | SE | Wald χ2 | P | HR | HR 95%CI |
---|---|---|---|---|---|---|
PRMT2 | 0.353 | 0.101 | 12.215 | <0.001 | 1.423 | 1.168~1.735 |
TRAF2 | 0.362 | 0.110 | 10.830 | <0.001 | 1.436 | 1.158~1.782 |
TNM分期 | 0.701 | 0.208 | 11.358 | <0.001 | 2.016 | 1.341~3.030 |
Tab.5 Multivariate Cox regression analysis
变量 | β | SE | Wald χ2 | P | HR | HR 95%CI |
---|---|---|---|---|---|---|
PRMT2 | 0.353 | 0.101 | 12.215 | <0.001 | 1.423 | 1.168~1.735 |
TRAF2 | 0.362 | 0.110 | 10.830 | <0.001 | 1.436 | 1.158~1.782 |
TNM分期 | 0.701 | 0.208 | 11.358 | <0.001 | 2.016 | 1.341~3.030 |
[1] | CIRILLO L, INNOCENTI S, BECHERUCCI F. Global epidemiology of kidney cancer[J]. Nephrol Dial Transplant, 2024, 39(6):920-928. doi:10.1093/ndt/gfae036. |
[2] | 吴亚蒙, 李亮亮, 王彦刚, 等. 血清APOC1和Klotho表达对肾癌后腹腔镜下肾部分切除术患者预后的预测价值[J]. 天津医药, 2025, 53(1):61-65. |
WU Y M, LI L L, WANG Y G, et al. Predictive value of serum APOC1 and Klotho expression for prognosis in patients undergoing laparoscopic partial nephrectomy for renal cancer[J]. Tianjin Med J, 2025, 53(1):61-65. doi:10.11958/20240969. | |
[3] | CHOWDHURY N, DRAKE C G. Kidney cancer:an overview of current therapeutic approaches[J]. Urol Clin North Am, 2020, 47(4):419-431. doi:10.1016/j.ucl.2020.07.009. |
[4] | SAUTER C, MORIN T, GUIDEZ F, et al. Protein arginine methyltransferase 2 controls inflammatory signaling in acute myeloid leukemia[J]. Commun Biol, 2024, 7(1):753. doi:10.1038/s42003-024-06453-6. |
[5] | JIE X, FONG W P, ZHOU R, et al. USP9X-mediated KDM4C deubiquitination promotes lung cancer radioresistance by epigenetically inducing TGF-β2 transcription[J]. Cell Death Differ, 2021, 28(7):2095-2111. doi:10.1038/s41418-021-00740-z. |
[6] | FINGER Y, HABICH M, GERLICH S, et al. Proteasomal degradation induced by DPP9-mediated processing competes with mitochondrial protein import[J]. EMBO J, 2020, 39(19):e103889. doi:10.15252/embj.2019103889. |
[7] | TANG Z, LI J, SHEN Q, et al. Contribution of upregulated dipeptidyl peptidase 9 (DPP9) in promoting tumoregenicity,metastasis and the prediction of poor prognosis in non-small cell lung cancer (NSCLC)[J]. Int J Cancer, 2017, 140(7):1620-1632. doi:10.1002/ijc.30571. |
[8] | ROSELLINI M, MARCHETTI A, MOLLICA V, et al. Prognostic and predictive biomarkers for immunotherapy in advanced renal cell carcinoma[J]. Nat Rev Urol, 2023, 20(3):133-157. doi:10.1038/s41585-022-00676-0. |
[9] | ZHAO J, BAI J, PENG F, et al. USP9X-mediated NRP1 deubiquitination promotes liver fibrosis by activating hepatic stellate cells[J]. Cell Death Dis, 2023, 14(1):40. doi:10.1038/s41419-022-05527-9. |
[10] | 杜蓓, 张民, 张建飞, 等. 脑胶质瘤组织去泛素化酶USP9X表达水平与病人生存预后的关系[J]. 中国临床神经外科杂志, 2023, 28(12):712-715. |
DU B, ZHANG M, ZHANG J F, et al. Relationship between the expression level of deubiquitinase Usp9x in brain glioma and the survival prognosis of patients[J]. Chinese Journal of Clinical Neurosurgery, 2023, 28 (12):712-715. doi:10.13798/j.issn.1009-153X.2023.12.011. | |
[11] | SEMENZA G L. Mechanisms of breast cancer stem cell specification and self-renewal mediated by hypoxia-inducible factor 1[J]. Stem Cells Transl Med, 2023, 12(12):783-790. doi:10.1093/stcltm/szad061. |
[12] | XU X, WANG S, WANG H, et al. Hsa_circ_0008434 regulates USP9X expression by sponging miR-6838-5p to promote gastric cancer growth,migration and invasion[J]. BMC Cancer, 2021, 21(1):1289. doi:10.1186/s12885-021-09052-4. |
[13] | LIU Q, AMINU B, ROSCOW O, et al. Targeting the ubiquitin signaling cascade in tumor microenvironment for cancer therapy[J]. Int J Mol Sci, 2021, 22(2):791. doi:10.3390/ijms22020791. |
[14] | GUAN T, YANG X, LIANG H, et al. Deubiquitinating enzyme USP9X regulates metastasis and chemoresistance in triple-negative breast cancer by stabilizing Snail1[J]. J Cell Physiol, 2022, 237(7):2992-3000. doi:10.1002/jcp.30763. |
[15] | LI H, ZHENG B. Overexpression of the ubiquitin-specific peptidase 9 X-Linked (USP9X) gene is associated with upregulation of cyclin D1 (CCND1) and downregulation of cyclin-dependent inhibitor kinase 1A (CDKN1A) in breast cancer tissue and cell lines[J]. Med Sci Monit, 2019, 25:4207-4216. doi:10.12659/MSM.914742. |
[16] | LU H, LYU Y, TRAN L, et al. HIF-1 recruits NANOG as a coactivator for TERT gene transcription in hypoxic breast cancer stem cells[J]. Cell Rep, 2021, 36(13):109757. doi:10.1016/j.celrep.2021.109757. |
[17] | ROLDÁN-ROMERO J M, VALDIVIA C, SANTOS M, et al. Deubiquitinase USP9X loss sensitizes renal cancer cells to mTOR inhibition[J]. Int J Cancer, 2023, 153(6):1300-1312. doi:10.1002/ijc.34575. |
[18] | HOLLINGSWORTH L R, SHARIF H, GRISWOLD A R, et al. DPP9 sequesters the C terminus of NLRP1 to repress inflammasome activation[J]. Nature, 2021, 592(7856):778-783. doi:10.1038/s41586-021-03350-4. |
[19] | BRUNETTI M, HOLTH A, PANAGOPOULOS I, et al. Expression and clinical role of the dipeptidyl peptidases DPP8 and DPP9 in ovarian carcinoma[J]. Virchows Arch, 2019, 474(2):177-185. doi:10.1007/s00428-018-2487-x. |
[20] | CHANG K, CHEN Y, ZHANG X, et al. DPP9 stabilizes NRF2 to suppress ferroptosis and induce sorafenib resistance in clear cell renal cell carcinoma[J]. Cancer Res, 2023, 83(23):3940-3955. doi:10.1158/0008-5472. |
[21] | HENDERSON J M, XIANG M, HUANG J C, et al. Dipeptidyl peptidase inhibition enhances CD8 T cell recruitment and activates intrahepatic inflammasome in a murine model of hepatocellular carcinoma[J]. Cancers (Basel), 2021, 13(21):5495-5503. doi:10.3390/cancers13215495. |
[22] | BOLGI O, SILVA-GARCIA M, ROSS B, et al. Dipeptidyl peptidase 9 triggers BRCA2 degradation and promotes DNA damage repair[J]. EMBO Rep, 2022, 23(10):e54136. doi:10.15252/embr.202154136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||