[1] |
ILYAS E, DAVID P L, ZOHER G, et al. Acute traumatic spinal cord injury[J]. Neurol Clin, 2021, 39(2):471-488. doi:10.1016/j.ncl.2021.02.004.
|
[2] |
ANJUM A, YAZID M D I, FAUZI D M, et al. Spinal cord injury:Pathophysiology, multimolecular interactions, and underlying recovery mechanisms[J]. Int J Mol Sci, 2020, 21(20):7533. doi:10.3390/ijms21207533.
|
[3] |
PAN Q, LIN F, LIU N, et al. The role of aquaporin 4(AQP4) in spinal cord injury[J]. Biomed Pharmacother, 2022, 145:112384. doi:10.1016/j.biopha.2021.112384.
|
[4] |
LI X, LI M, TIAN L, et al. Reactive astrogliosis:implications in spinal cord injury progression and therapy[J]. Oxid Med Cell Longev, 2020, 2020:9494352. doi:10.1155/2020/9494352.
|
[5] |
SUN L, LI M, MA X, et al. Inhibiting high mobility group Box-1 reduces early spinal cord edema and attenuates astrocyte activation and aquaporin-4 expression after spinal cord injury in rats[J]. J Neurotrauma, 2019, 36:421-435. doi:10.1089/neu.2018.5642.
|
[6] |
ZU J, WANG Y, XU G, et al. Curcumin improves the recovery of motor function and reduces spinal cord edema in a rat acute spinal cord injury model by inhibiting the JAK/STAT signaling pathway[J]. Acta Histochem, 2014, 116(8):1331-1336. doi:10.1016/j.acthis.2014.08.004.
|
[7] |
SUSTER I, FENG Y. Multifaceted regulation of microRNA biogenesis:essential roles and functional integration in neuronal and glial development[J]. Int J Mol Sci, 2021, 22(13):6765. doi:10.3390/ijms22136765.
|
[8] |
ALI S Z, LANGDEN S, MUNKHZUL C, et al. Regulatory mechanism of microRNA expression in cancer[J]. Int J Mol Sci, 2020, 21(5):1723. doi:10.3390/ijms21051723.
|
[9] |
LI J, WANG L, HE F, et al. Long noncoding RNA LINC00629 restrains the progression of gastric cancer by upregulating AQP4 through competitively binding to miR-196b-5p[J]. J Cell Physiol, 2020, 235(3):2973-2985. doi:10.1002/jcp.29203.
|
[10] |
ROPPER A E, ZENG X, ANDERSON J E, et al. An efficient device to experimentally model compression injury of mammalian spinal cord[J]. Exp Neurol, 2015, 271:515-523. 10.1016/j.expneurol.2015.07.012.
|
[11] |
SUN P, LIU D Z, JICKLING G C, et al. MicroRNA-based therapeutics in central nervous system injuries[J]. J Cereb Blood Flow Metab, 2018, 38(7):1125-1148. doi:10.1177/0271678X18773871.
|
[12] |
戴国宇, 刘吉松, 李坚, 等. MiRNA-125a-5p对大鼠脊髓损伤后血脊髓屏障及运动功能的影响[J]. 解剖学杂志, 2019, 42(3):225-230.
|
|
DAI G Y, LIU J S, LI J, et al. Effects of miRNA-125a-5p on blood spinal cord barrier and motor function after spinal cord injury in rats[J]. Chin J Anat, 2019, 42(3):225-230.
|
[13] |
WANG Y, HUANG J, MA Y, et al. MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4[J]. J Cere Blood Flow Metab, 2015, 35(12):1977-1984. doi:10.1038/jcbfm.2015.156.
|
[14] |
彭程, 黄健华, 孙建忠, 等. miR-126对急性脊髓损伤大鼠血管的作用及机制研究[J]. 国际骨科学杂志, 2020, 41(6):382-388.
|
|
PENG C, HUANG J H, SUN J Z, et al. Effect and mechanism of miR-126 on blood vessels in rats with acute spinal cord injury[J]. International Journal of Orthopaedics, 2020, 41(6):382-388.
|
[15] |
PIERRE M F, MARTIN J S. Regulation and different functions of the animal microRNA-induced silencing complex[J]. Wiley Interdiscip Rev RNA, 2021:e1701. doi:10.1002/wrna.1701.
|
[16] |
COWAN H, LAKRA C, DESAI M, et al. Autonomic dysreflexia in spinal cord injury[J]. BMJ, 2020, 371:m3596. doi:10.1136/bmj.m3596.
|
[17] |
GUO P P, JIN Z, WANG J, et al. Irisin rescues blood-brain barrier permeability following traumatic brain injury and contributes to the neuroprotection of exercise in traumatic brain injury[J]. Oxi Med Cell Longev, 2021, 2021:1118981. doi:10.1155/2021/1118981.
|
[18] |
宗委峰, 喻志源, 骆翔. 脊髓胶质瘢痕的研究进展[J]. 神经损伤与功能重建, 2021, 16(11):649-652.
|
|
ZONG W F, YU Z Y, LUO X. Research progress of glial scar of spinal cord[J]. Neural Injury and Functional Reconstruction, 2021, 16(11):649-652.
|
[19] |
KWIECIEN J M, DĄBROWSKI W, YARON J R, et al. The role of astrogliosis in formation of the syrinx in spinal cord injury[J]. Curr Neuropharmacol, 2021, 19:294-303. doi:10.2174/1570159X18666200720225222.
|
[20] |
YANG T, DAI Y, CHEN G, et al. Dissecting the dual role of the glial scar and scar-forming astrocytes in spinal cord injury[J]. Front Cell Neurosci, 2020, 14:78. doi:10.3389/fncel.2020.00078.
|
[21] |
HUANG Y, LI S N, ZHOU X Y, et al. The dual role of AQP4 in cytotoxic and vasogenic edema following spinal cord contusion and its possible association with energy metabolism via COX5A[J]. Front Neurosci, 2019, 13:584. doi:10.3389/fnins.2019.00584.
|