| [1] |
CAO D, LIU Y, CHENG Y, et al. Time-series single-cell transcriptomic profiling of luteal-phase endometrium uncovers dynamic characteristics and its dysregulation in recurrent implantation failures[J]. Nat Commun, 2025, 16(1):137. doi:10.1038/s41467-024-55419-z.
|
| [2] |
LIU X, ZHAO Y, FENG Y, et al. Ovarian aging:mechanisms,age-related disorders,and therapeutic interventions[J]. MedComm (2020), 2025, 6(12):e70481. doi:10.1002/mco2.70481.
|
| [3] |
BALOUGH J L, DIPALI S S, VELEZ K, et al. Hallmarks of female reproductive aging in physiologic aging mice[J]. Nat Aging, 2024, 4(12):1711-1730. doi:10.1038/s43587-024-00769-y.
|
| [4] |
LU C, LI Z, XIA F, et al. Beta-aminoisobutyric acid improves bovine oocyte maturation and subsequent embryonic development by promoting lipid catabolism[J]. Theriogenology, 2025, 234:153-163. doi:10.1016/j.theriogenology.2024.12.016.
|
| [5] |
CAO D, BERGMANN J, ZHONG L, et al. Selective utilization of glucose metabolism guides mammalian gastrulation[J]. Nature, 2024, 634(8035):919-928. doi:10.1038/s41586-024-08044-1.
|
| [6] |
WEI Y, DING J, LI J, et al. Metabolic reprogramming of immune cells at the maternal-fetal interface and the development of techniques for immunometabolism[J]. Front Immunol, 2021, 12:717014. doi:10.3389/fimmu.2021.717014.
|
| [7] |
MACKLON N. Resolving recurrent implantation failure[J]. Reprod Biomed Online, 2025, 50(4):104827. doi:10.1016/j.rbmo.2025.104827.
|
| [8] |
BROEKMANS F J, SOULES M R, FAUSER B C. Ovarian aging:mechanisms and clinical consequences[J]. Endocr Rev, 2009, 30(5):465-493. doi:10.1210/er.2009-0006.
|
| [9] |
ZHANG Z, WU T, SANG Q, et al. Human oocyte quality and reproductive health[J]. Sci Bull (Beijing), 2025, 70(14):2365-2376. doi:10.1016/j.scib.2025.04.045.
|
| [10] |
SECOMANDI L, BORGHESAN M, VELARDE M, et al. The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions[J]. Hum Reprod Update, 2022, 28(2):172-189. doi:10.1093/humupd/dmab038.
|
| [11] |
CHEN Y, ZHANG J, TIAN Y, et al. Iron accumulation in ovarian microenvironment damages the local redox balance and oocyte quality in aging mice[J]. Redox Biol, 2024, 73:103195. doi:10.1016/j.redox.2024.103195.
|
| [12] |
Recognizing the importance of ovarian aging research[J]. Nat Aging, 2022, 2(12):1071-1072. doi:10.1038/s43587-022-00339-0.
|
| [13] |
JIN C, WANG X, YANG J, et al. Molecular and genetic insights into human ovarian aging from single-nuclei multi-omics analyses[J]. Nat Aging, 2025, 5(2):275-290. doi:10.1038/s43587-024-00762-5.
|
| [14] |
DOU X, SUN Y, LI J, et al. Short-term rapamycin treatment increases ovarian lifespan in young and middle-aged female mice[J]. Aging Cell, 2017, 16(4):825-836. doi:10.1111/acel.12617.
|
| [15] |
LIANG J, HUANG F, SONG Z, et al. Impact of NAD+ metabolism on ovarian aging[J]. Immun Ageing, 2023, 20(1):70. doi:10.1186/s12979-023-00398-w.
|
| [16] |
FELDMAN J L, DITTENHAFER-REED K E, DENU J M. Sirtuin catalysis and regulation[J]. J Biol Chem, 2012, 287(51):42419-42427. doi:10.1074/jbc.R112.378877.
|
| [17] |
LIU M, YIN Y, YE X, et al. Resveratrol protects against age-associated infertility in mice[J]. Hum Reprod, 2013, 28(3):707-717. doi:10.1093/humrep/des437.
|
| [18] |
SUGIYAMA M, KAWAHARA-MIKI R, KAWANA H, et al. Resveratrol-induced mitochondrial synthesis and autophagy in oocytes derived from early antral follicles of aged cows[J]. J Reprod Dev, 2015, 61(4):251-259. doi:10.1262/jrd.2015-001.
|
| [19] |
YE Q, ZENG X, CAI S, et al. Mechanisms of lipid metabolism in uterine receptivity and embryo development[J]. Trends Endocrinol Metab, 2021, 32(12):1015-1030. doi:10.1016/j.tem.2021.09.002.
|
| [20] |
BIGGERS J D, MCGINNIS L K. Evidence that glucose is not always an inhibitor of mouse preimplantation development in vitro[J]. Hum Reprod, 2001, 16(1):153-163. doi:10.1093/humrep/16.1.153.
|
| [21] |
ZHANG Y, LI T, WANG Y, et al. Key glycometabolism during oocyte maturation and early embryonic development[J]. Reproduction, 2025, 169(3):e240275. doi:10.1530/REP-24-0275.
|
| [22] |
YU X, WU H, SU J, et al. Acetyl-CoA metabolism maintains histone acetylation for syncytialization of human placental trophoblast stem cells[J]. Cell Stem Cell, 2024, 31(9):1280-1297.e7. doi:10.1016/j.stem.2024.07.003.
|
| [23] |
MORELLI A M, SCHOLKMANN F. Should the standard model of cellular energy metabolism be reconsidered? Possible coupling between the pentose phosphate pathway,glycolysis and extra-mitochondrial oxidative phosphorylation[J]. Biochimie, 2024, 221:99-109. doi:10.1016/j.biochi.2024.01.018.
|
| [24] |
REYES J S, CORTÉS-RÍOS J, FUENTES-LEMUS E, et al. Competitive oxidation of key pentose phosphate pathway enzymes modulates the fate of intermediates and NAPDH production[J]. Free Radic Biol Med, 2024, 222:505-518. doi:10.1016/j.freeradbiomed.2024.05.050.
|
| [25] |
LEE S H, RINAUDO P F. Metabolic regulation of preimplantation embryo development in vivo and in vitro:Molecular mechanisms and insights[J]. Biochem Biophys Res Commun, 2024, 726:150256. doi:10.1016/j.bbrc.2024.150256.
|
| [26] |
ZHANG L, ZHAO J, LAM S M, et al. Low-input lipidomics reveals lipid metabolism remodelling during early mammalian embryo development[J]. Nat Cell Biol, 2024, 26(2):278-293. doi:10.1038/s41556-023-01341-3.
|
| [27] |
MORGAN P K, PERNES G, HUYNH K, et al. A lipid atlas of human and mouse immune cells provides insights into ferroptosis susceptibility[J]. Nat Cell Biol, 2024, 26(4):645-659. doi:10.1038/s41556-024-01377-z.
|
| [28] |
AGBU P, CARTHEW R W. MicroRNA-mediated regulation of glucose and lipid metabolism[J]. Nat Rev Mol Cell Biol, 2021, 22(6):425-438. doi:10.1038/s41580-021-00354-w.
|
| [29] |
MAZZARELLA R, CAÑÓN-BELTRÁN K, CAJAS Y N, et al. Extracellular vesicles-coupled miRNAs from oviduct and uterus modulate signaling pathways related to lipid metabolism and bovine early embryo development[J]. J Anim Sci Biotechnol, 2024, 15(1):51. doi:10.1186/s40104-024-01008-5.
|
| [30] |
GREGORI S, AMODIO G, QUATTRONE F, et al. HLA-G Orchestrates the early interaction of human trophoblasts with the maternal niche[J]. Front Immunol, 2015, 6:128. doi:10.3389/fimmu.2015.00128.
|
| [31] |
VASSILIADOU N, BULMER J N. Functional studies of human decidua in spontaneous early pregnancy loss: effect of soluble factors and purified CD56+ lymphocytes on killing of natural killer- and lymphokine-activated killer-sensitive targets[J]. Biol Reprod, 1998, 58(4):982-987. doi:10.1095/biolreprod58.4.982.
|
| [32] |
JHA A, BAUMANN N, SHADID I, et al. The relationship of fetal sex and maternal race and ethnicity with early and late pregnancy C-reactive protein and interleukin-8[J]. Am J Reprod Immunol, 2023, 90(2):e13746. doi:10.1111/aji.13746.
|
| [33] |
ROBERTSON S A, CARE A S, MOLDENHAUER L M. Regulatory T cells in embryo implantation and the immune response to pregnancy[J]. J Clin Invest, 2018, 128(10):4224-4235. doi:10.1172/JCI122182.
|
| [34] |
WANG K, ZHANG S, WANG Y, et al. Taprenepag restores maternal-fetal interface homeostasis for the treatment of neurodevelopmental disorders[J]. J Neuroinflammation, 2024, 21(1):307. doi:10.1186/s12974-024-03300-7.
|