Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (8): 814-819.doi: 10.11958/20221529
• Cell and Molecular Biology • Previous Articles Next Articles
WANG Yuning1(), SONG Juxing2, TIAN Zhigang3, HAO Guorong1, SHEN Hao1
Received:
2022-09-22
Revised:
2023-03-03
Published:
2023-08-15
Online:
2023-08-10
WANG Yuning, SONG Juxing, TIAN Zhigang, HAO Guorong, SHEN Hao. The effect of piceatannol on the migration and invasion of cervical cancer cells by regulating miR-106b-5p/RUNX3 axis[J]. Tianjin Medical Journal, 2023, 51(8): 814-819.
CLC Number:
组别 | miR-106b-5p | RUNX3 | 迁移数量/(个/视野) | 侵袭数量/(个/视野) | MMP2 | MMP9 |
---|---|---|---|---|---|---|
Control组 | 1.00±0.03 | 0.31±0.02 | 296.31±33.24 | 221.27±20.16 | 1.24±0.10 | 1.35±0.13 |
PIC组 | 0.24±0.04a | 1.12±0.10a | 94.20±4.67a | 64.38±8.17a | 0.37±0.04a | 0.42±0.04a |
PIC+NC mimics组 | 0.28±0.05a | 1.15±0.12a | 98.86±4.97a | 69.31±6.19a | 0.41±0.05a | 0.51±0.06a |
PIC+miR-106b-5p mimics组 | 0.63±0.07c | 0.71±0.08c | 183.31±15.83c | 137.29±11.54c | 0.79±0.08c | 0.92±0.09c |
F | 304.869** | 120.789** | 153.635** | 200.789** | 192.263** | 144.477** |
Tab.1 Comparison of miR-106b-5p and RUNX3 expression levels, migration and invasion ability between the four groups of Hela cells
组别 | miR-106b-5p | RUNX3 | 迁移数量/(个/视野) | 侵袭数量/(个/视野) | MMP2 | MMP9 |
---|---|---|---|---|---|---|
Control组 | 1.00±0.03 | 0.31±0.02 | 296.31±33.24 | 221.27±20.16 | 1.24±0.10 | 1.35±0.13 |
PIC组 | 0.24±0.04a | 1.12±0.10a | 94.20±4.67a | 64.38±8.17a | 0.37±0.04a | 0.42±0.04a |
PIC+NC mimics组 | 0.28±0.05a | 1.15±0.12a | 98.86±4.97a | 69.31±6.19a | 0.41±0.05a | 0.51±0.06a |
PIC+miR-106b-5p mimics组 | 0.63±0.07c | 0.71±0.08c | 183.31±15.83c | 137.29±11.54c | 0.79±0.08c | 0.92±0.09c |
F | 304.869** | 120.789** | 153.635** | 200.789** | 192.263** | 144.477** |
组别 | RUNX3-WT | RUNX3-MUT |
---|---|---|
miR-NC组 | 1.00±0.01 | 1.01±0.02 |
miR-106b-5p mimics组 | 0.29±0.05 | 0.99±0.03 |
t | 34.107** | 1.359 |
Tab.2 Comparison of luciferase activities of RUNX3-WT and RUNX3-MUT between the two groups
组别 | RUNX3-WT | RUNX3-MUT |
---|---|---|
miR-NC组 | 1.00±0.01 | 1.01±0.02 |
miR-106b-5p mimics组 | 0.29±0.05 | 0.99±0.03 |
t | 34.107** | 1.359 |
组别 | miR-106b-5p | RUNX3 | 迁移数量/(个/视野) | 侵袭数量/(个/视野) | MMP2 | MMP9 |
---|---|---|---|---|---|---|
NC inhibitor组 | 1.02±0.05 | 0.25±0.03 | 284.29±30.74 | 211.28±20.93 | 1.30±0.11 | 1.42±0.14 |
miR-106b-5p inhibitor组 | 0.32±0.04a | 0.99±0.08a | 86.14±3.20a | 51.27±7.38a | 0.31±0.04a | 0.37±0.03a |
miR-106b-5p inhibitor+si-RNA组 | 0.28±0.04a | 1.07±0.12a | 93.75±4.18a | 58.16±3.15a | 0.27±0.03a | 0.30±0.05a |
miR-106b-5p inhibitor+si-RUNX3组 | 0.57±0.06c | 0.63±0.05c | 171.23±13.16c | 143.14±11.65c | 0.85±0.07c | 1.05±0.10c |
F | 298.559** | 140.000** | 177.429** | 217.499** | 294.677** | 213.552** |
Tab.3 Comparison of RUNX3 expression levels and migration and invasion ability between the four groups of Hela cells
组别 | miR-106b-5p | RUNX3 | 迁移数量/(个/视野) | 侵袭数量/(个/视野) | MMP2 | MMP9 |
---|---|---|---|---|---|---|
NC inhibitor组 | 1.02±0.05 | 0.25±0.03 | 284.29±30.74 | 211.28±20.93 | 1.30±0.11 | 1.42±0.14 |
miR-106b-5p inhibitor组 | 0.32±0.04a | 0.99±0.08a | 86.14±3.20a | 51.27±7.38a | 0.31±0.04a | 0.37±0.03a |
miR-106b-5p inhibitor+si-RNA组 | 0.28±0.04a | 1.07±0.12a | 93.75±4.18a | 58.16±3.15a | 0.27±0.03a | 0.30±0.05a |
miR-106b-5p inhibitor+si-RUNX3组 | 0.57±0.06c | 0.63±0.05c | 171.23±13.16c | 143.14±11.65c | 0.85±0.07c | 1.05±0.10c |
F | 298.559** | 140.000** | 177.429** | 217.499** | 294.677** | 213.552** |
[1] | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi:10.3322/caac.21660. |
[2] | LEI J, ARROYO-MÜHR L S, LAGHEDEN C, et al. Human papillomavirus infection determines prognosis in cervical cancer[J]. J Clin Oncol, 2022, 40(14):1522-1528. doi:10.1200/JCO.21.01930. |
[3] | MAYADEV J S, KE G, MAHANTSHETTY U, et al. Global challenges of radiotherapy for the treatment of locally advanced cervical cancer[J]. Int J Gynecol Cancer, 2022, 32(3):436-445. doi:10.1136/ijgc-2021-003001. |
[4] | WANG K J, ZHANG W Q, LIU J J, et al. Piceatannol protects against cerebral ischemia/reperfusion‑induced apoptosis and oxidative stress via the Sirt1/FoxO1 signaling pathway[J]. Mol Med Rep, 2020, 22(6):5399-5411. doi:10.3892/mmr.2020.11618. |
[5] | WANG B, LI J. Piceatannol suppresses the proliferation and induced apoptosis of osteosarcoma cells through PI3K/AKT/mTOR pathway[J]. Cancer Manag Res, 2020, 12(3):2631-2640. doi:10.2147/CMAR.S238173. |
[6] | LI X G, ZHANG W S, YAN X P. Piceatannol inhibits proliferation and induces apoptosis of bladder cancer cells through regulation of the PTEN/AKT signal pathway[J]. Cell Mol Biol (Noisy-le-grand), 2020, 66(3):181-184. |
[7] | ALJABALI A A A, BAKSHI H A, HAKKIM F L, et al. Albumin nano-encapsulation of piceatannol enhances its anticancer potential in colon cancer via downregulation of nuclear p65 and HIF-1α[J]. Cancers (Basel), 2020, 12(1):113-118. doi:10.3390/cancers12010113. |
[8] | FAN Y, SHENG W, MENG Y, et al. LncRNA PTENP1 inhibits cervical cancer progression by suppressing miR-106b[J]. Artif Cells Nanomed Biotechnol, 2020, 48(1):393-407. doi:10.1080/21691401.2019.1709852. |
[9] | GU H, GU S, ZHANG X, et al. miR-106b-5p promotes aggressive progression of hepatocellular carcinoma via targeting RUNX3[J]. Cancer Med, 2019, 8(15):6756-6767. doi:10.1002/cam4.2511. |
[10] | 戴云峰. RUNX3和VEGF在宫颈癌组织中的表达分析[J]. 中国医药指南, 2020, 18(9):51-52. |
DAI Y F. Expression analysis of RUNX3 and VEGF in cervical carcinoma[J]. Guide of China Medicine, 2020, 18(9):51-52. doi:10.15912/j.cnki.gocm.2020.09.028. | |
[11] | SUN X, FU P, XIE L, et al. Resveratrol inhibits the progression of cervical cancer by suppressing the transcription and expression of HPV E6 and E7 genes[J]. Int J Mol Med, 2021, 47(1):335-345. doi:10.3892/ijmm.2020.4789. |
[12] | 王旭, 徐文举, 袁五营. miRNA-4262通过靶向神经调节蛋白1调控非小细胞肺癌细胞增殖,侵袭,迁移的作用机制[J]. 癌症进展, 2020, 18(2):133-137. |
WANG X, XU W J, YUAN W Y. Mechanism of miRNA-4262 regulating the proliferation, invasion and migration of non-small cell lung cancer cells by targeting NRG1[J]. Oncology Progress, 2020, 18(2):133-137. doi:10.11877/j.issn.1672-1535.2020.18.02.07. | |
[13] | KUMAR A, RIMANDO A M, LEVENSON A S. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer[J]. Ann N Y Acad Sci, 2017, 1403(1):15-26. doi:10.1111/nyas.13372. |
[14] | DU M, ZHANG Z, GAO T. Piceatannol induced apoptosis through up-regulation of microRNA-181a in melanoma cells[J]. Biol Res, 2017, 50(1):36-45. doi:10.1186/s40659-017-0141-8. |
[15] | PAN M, CHEN Q, LU Y, et al. MiR-106b-5p regulates the migration and invasion of colorectal cancer cells by targeting FAT4[J]. Biosci Rep, 2020, 40(11):98-105. doi:10.1042/BSR20200098. |
[16] | YU L X, ZHANG B L, YANG M Y, et al. MicroRNA-106b-5p promotes hepatocellular carcinoma development via modulating FOG2[J]. Onco Targets Ther, 2019, 12(5):5639-5647. doi:10.2147/OTT.S203382. |
[17] | XIAO Z, TIAN Y, JIA Y, et al. RUNX3 inhibits the invasion and migration of esophageal squamous cell carcinoma by reversing the epithelial-mesenchymal transition through TGF-β/Smad signaling[J]. Oncol Rep, 2020, 43(4):1289-1299. doi:10.3892/or.2020.7508. |
[18] | SONG J, LIU Y, WANG T, et al. MiR-17-5p promotes cellular proliferation and invasiveness by targeting RUNX3 in gastric cancer[J]. Biomed Pharmacother, 2020, 128(4):110246-110253. doi:10.1016/j.biopha.2020.110246. |
[19] | QIN X, WANG X Y, FEI J W, et al. MiR-20a promotes lung tumorigenesis by targeting RUNX3 via TGF-β signaling pathway[J]. J Biol Regul Homeost Agents, 2020, 34(2):12-20. doi:10.23812/20-12A. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||