[1] |
DUAN C, LIU M, XU H, et al. Decreased expression of GLUT4 in male CG-IUGR rats may play a vital role in their increased susceptibility to diabetes mellitus in adulthood[J]. Acta Biochim Biophys Sin(Shanghai), 2016, 48(10):872-882. doi:10.1093/abbs/gmw088.
|
[2] |
高琳琳, 王军, 郭妍妍, 等. 叶酸对IUGR大鼠胎盘VEGF及其受体1表达的影响[J]. 天津医药, 2022, 50(1):73-77.
|
|
GAO L L, WANG J, GUO Y Y, et al. Effects of folic acid on expression of VEGF and receptor 1 in placenta of IUGR rats[J]. Tianjin Med J, 2022, 50(1):73-77. doi:10.11958/20211385.
|
[3] |
袁冰舒, 赵海龙, 李丽娟. 肠道细菌与肥胖及2型糖尿病关系的研究进展[J]. 天津医药, 2019, 47(10):1102-1107.
|
|
YUAN B S, ZHAO H L, LI L J. Research progress on relationship between intestinal flora and obesity and type 2 diabetes[J]. Tianjin Med J, 2019, 47(10):1102-1107. doi:10.11958/20191036.
|
[4] |
GRECH A, COLLINS C E, HOLMES A, et al. Maternal exposures and the infant gut microbiome: a systematic review with meta-analysis[J]. Gut Microbes, 2021, 13(1):1-30. doi: 10.1080/19490976.2021.1897210.
|
[5] |
NULI R, AZHATI J, CAI J, et al. Metagenomics and faecal metabolomics integrative analysis towards the impaired glucose regulation and type 2 diabetes in uyghur-related omics[J]. J Diabetes Res, 2019, 2019:2893041. doi:10.1155/2019/2893041.
|
[6] |
CAO Y, YAO G, SHENG Y, et al. JinQi Jiangtang tablet regulates gut microbiota and improve insulin sensitivity in type 2 diabetes mice[J]. J Diabetes Res, 2019, 2019:1872134. doi:10.1155/2019/1872134.
|
[7] |
LONG W, ZHOU T, XUAN X, et al. IUGR with catch-up growth programs impaired insulin sensitivity through LRP6/IRS-1 in male rats[J]. Endocr Connect, 2022, 11(1):e210203. doi:10.1530/EC-21-0203.
|
[8] |
郑锐丹, 汪无尽, 应艳琴, 等. 生长追赶宫内发育迟缓大鼠早期糖脂代谢及脂肪细胞功能的改变[J]. 中国当代儿科杂志, 2012, 14(7):543-547.
|
|
ZHENG R D, WANG W J, YING Y Q, et al. Effects of intrauterine growth retardation with catch-up growth on sugar-lipid metabolism and adipocyte function in young rats[J]. Chinese Journal of Contemporary Pediatrics, 2012, 14(7):543-547.
|
[9] |
WU Y, YIN G, WANG P, et al. Effects of different diet-induced postnatal catch-up growth on glycolipid metabolism in intrauterine growth retardation male rats[J]. Exp Ther Med, 2020, 20(6):134. doi:10.3892/etm.2020.9263.
|
[10] |
WANG B, CHENG J, WAN H, et al. Early-life exposure to the Chinese famine,genetic susceptibility and the risk of type 2 diabetes in adulthood[J]. Diabetologia, 2021, 64(8):1766-1774. doi:10.1007/s00125-021-05455-x.
|
[11] |
CHEN D, WANG Y Y, LI S P, et al. Maternal propionate supplementation ameliorates glucose and lipid metabolic disturbance in hypoxia-induced fetal growth restriction[J]. Food Funct, 2022, 13(20):10724-10736. doi:10.1039/d2fo01481e.
|
[12] |
REN C, ZHANG Y, CUI W, et al. A polysaccharide extract of mulberry leaf ameliorates hepatic glucose metabolism and insulin signaling in rats with type 2 diabetes induced by high fat-diet and streptozotocin[J]. Int J Biol Macromol, 2015, 72:951-959. doi:10.1016/j.ijbiomac.2014.09.060.
|
[13] |
OYENIHI A B, LANGA S, MUKARATIRWA S, et al. Effects of centella asiatica on skeletal muscle structure and key enzymes of glucose and glycogen metabolism in type 2 diabetic rats[J]. Biomed Pharmacother, 2019, 112:108715. doi:10.1016/j.biopha.2019.108715.
|
[14] |
LUO D, MU T, SUN H. Sweet potato(Ipomoea batatas L.)leaf polyphenols ameliorate hyperglycemia in type 2 diabetes mellitus mice[J]. Food Funct, 2021, 12(9):4117-4131. doi:10.1039/d0fo02733b.
|
[15] |
XIROUCHAKI C E, MANGIAFICO S P, BATE K, et al. Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice[J]. Mol Metab, 2016, 5(3):221-232. doi:10.1016/j.molmet.2016.01.004.
|
[16] |
DENG N, ZHENG B, LI T, et al. Assessment of the phenolic profiles,hypoglycemic activity,and molecular mechanism of different highland barley(Hordeum vulgare L.)varieties[J]. Int J Mol Sci, 2020, 21(4):1175. doi:10.3390/ijms21041175.
|
[17] |
FASSATOUI M, LOPEZ-SILES M, DÍAZ-RIZZOLO D A, et al. Gut microbiota imbalances in Tunisian participants with type 1 and type 2 diabetes mellitus[J]. Biosci Rep, 2019, 39(6):BSR20182348. doi:10.1042/BSR20182348.
|
[18] |
ZHANG L, QIN Q, LIU M, et al. Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity,oxidative stress and inflammation,and normalize intestine microbiota in streptozotocin-induced diabetic rats[J]. Pathog Dis, 2018, 76(4): fty028. doi:10.1093/femspd/fty028.
|
[19] |
XIE X, LIAO J, AI Y, et al. Pi-Dan-Jian-Qing Decoction ameliorates type 2 diabetes mellitus through regulating the gut microbiota and serum metabolism[J]. Front Cell Infect Microbiol, 2021, 11:748872. doi:10.3389/fcimb.2021.748872.
|
[20] |
YU F, HAN W, ZHAN G, et al. Abnormal gut microbiota composition contributes to the development of type 2 diabetes mellitus in db/db mice[J]. Aging (Albany NY), 2019, 11(22):10454-10467. doi:10.18632/aging.102469.
|
[21] |
ZHANG P P, LI L L, HAN X, et al. Fecal microbiota transplantation improves metabolism and gut microbiome composition in db/db mice[J]. Acta Pharmacol Sin, 2020, 41(5):678-685. doi:10.1038/s41401-019-0330-9.
|
[22] |
WANG Y, YANG Z, TANG H, et al. Faecal microbiota transplantation is better than probiotics for tissue regeneration of type 2 diabetes mellitus injuries in mice[J]. Arch Physiol Biochem, 2022:1-9. doi:10.1080/13813455.2022.2080229.
|
[23] |
LI Y, DAI C, YUAN Y, et al. The mechanisms of lncRNA Tug1 in islet dysfunction in a mouse model of intrauterine growth retardation[J]. Cell Biochem Funct, 2020, 38(8):1129-1138. doi:10.1002/cbf.3575.
|
[24] |
相萌, 王春阳, 张力, 等. 黄芩苷对宫内生长迟缓胎鼠胰岛素抵抗及PI3K/AKT通路的影响[J]. 中国新药与临床杂志, 2021, 40(10):718-723.
|
|
XIANG M, WANG C Y, ZHANG L, et al. Effects of baicalin on insulin resistance and PI3K/AKT pathway in fetal rats with intrauterine growth retardation[J]. Chinese Journal of New Drugs and Clinical Remedies, 2021, 40(10):718-723. doi:10.14109/jxnki.xyylc.2021.10.10.
|