Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (3): 294-298.doi: 10.11958/20221307
• Clinical Research • Previous Articles Next Articles
LIU Yanqiu1(), FAN Haidi1, HOU Haiyan2, SUN Jian1, LIN Ning△(
)
Received:
2022-08-22
Revised:
2022-10-12
Published:
2023-03-15
Online:
2023-03-02
Contact:
LIN Ning
E-mail:hayylyq@126.com;hayyln@126.com
LIU Yanqiu, FAN Haidi, HOU Haiyan, SUN Jian, LIN Ning. Correlation research between sTIM-3 and its ligands Gal-9, HMGB1 in patients with type 2 diabetes complicated with coronary heart disease[J]. Tianjin Medical Journal, 2023, 51(3): 294-298.
CLC Number:
组别 | n | 男性 | 年龄(岁) | BMI(kg/m2) | FBG(mmol/L) | HbA1c(%) |
---|---|---|---|---|---|---|
Con组 | 48 | 23(47.9) | 51.00(47.00,55.00) | 22.05±3.37 | 5.19(4.88,5.57) | 4.80(4.43,5.20) |
T2DM组 | 50 | 26(52.0) | 51.50(47.75,58.25) | 25.15±3.07a | 9.68(8.15,11.63)a | 8.67(7.88,9.49)a |
T2DM+CHD组 | 52 | 25(48.1) | 51.00(47.00,58.00) | 26.64±3.58ab | 12.25(8.86,15.92)a | 9.00(7.33,11.45)a |
χ2/F | 0.214 | 0.780 | 24.245** | 102.050** | 97.268** |
Tab.1 Comparison of clinical data between three groups
组别 | n | 男性 | 年龄(岁) | BMI(kg/m2) | FBG(mmol/L) | HbA1c(%) |
---|---|---|---|---|---|---|
Con组 | 48 | 23(47.9) | 51.00(47.00,55.00) | 22.05±3.37 | 5.19(4.88,5.57) | 4.80(4.43,5.20) |
T2DM组 | 50 | 26(52.0) | 51.50(47.75,58.25) | 25.15±3.07a | 9.68(8.15,11.63)a | 8.67(7.88,9.49)a |
T2DM+CHD组 | 52 | 25(48.1) | 51.00(47.00,58.00) | 26.64±3.58ab | 12.25(8.86,15.92)a | 9.00(7.33,11.45)a |
χ2/F | 0.214 | 0.780 | 24.245** | 102.050** | 97.268** |
组别 | n | sTIM-3(ng/L) | Gal-9(ng/L) | HMGB1(ng/L) |
---|---|---|---|---|
Con组 | 48 | 169.31(149.28,187.71) | 361.47±76.92 | 823.73(757.03,901.77) |
T2DM组 | 50 | 203.95(169.46,240.09)a | 407.37±52.80a | 940.95(857.03,1 019.66)a |
T2DM+CHD组 | 52 | 252.81(199.47,330.65)ab | 441.36±76.84ab | 998.39(879.48,1 087.47)a |
F | 43.253** | 16.522** | 34.700** |
Tab.2 Comparison of serum sTIM-3, Gal-9 and HMGB1 levels between three groups
组别 | n | sTIM-3(ng/L) | Gal-9(ng/L) | HMGB1(ng/L) |
---|---|---|---|---|
Con组 | 48 | 169.31(149.28,187.71) | 361.47±76.92 | 823.73(757.03,901.77) |
T2DM组 | 50 | 203.95(169.46,240.09)a | 407.37±52.80a | 940.95(857.03,1 019.66)a |
T2DM+CHD组 | 52 | 252.81(199.47,330.65)ab | 441.36±76.84ab | 998.39(879.48,1 087.47)a |
F | 43.253** | 16.522** | 34.700** |
变量 | AUC(95%CI) | 敏感度 (%) | 特异度 (%) | 截断值 (ng/L) | 约登 指数 |
---|---|---|---|---|---|
sTIM-3 | 0.794(0.722~0.867) | 62.75 | 87.50 | 204.28 | 0.50 |
Gal-9 | 0.735(0.651~0.820) | 50.00 | 85.42 | 422.41 | 0.35 |
联合诊断 | 0.812(0.743~0.882) | 67.65 | 83.33 | — | 0.51 |
Tab.3 Comparison of sTIM-3, Gal-9 and their combination detection in the diagnosis of T2DM complicated with CHD
变量 | AUC(95%CI) | 敏感度 (%) | 特异度 (%) | 截断值 (ng/L) | 约登 指数 |
---|---|---|---|---|---|
sTIM-3 | 0.794(0.722~0.867) | 62.75 | 87.50 | 204.28 | 0.50 |
Gal-9 | 0.735(0.651~0.820) | 50.00 | 85.42 | 422.41 | 0.35 |
联合诊断 | 0.812(0.743~0.882) | 67.65 | 83.33 | — | 0.51 |
因素 | β | SE | Wald χ2 | P | OR(95%CI) |
---|---|---|---|---|---|
BMI | 0.213 | 0.062 | 11.690 | 0.001 | 1.237(1.095,1.833) |
年龄 | 0.022 | 0.023 | 0.874 | 0.350 | 1.022(0.976,1.070) |
sTIM-3 | 0.013 | 0.004 | 8.287 | 0.004 | 1.013(1.004,1.021) |
Gal-9 | 0.007 | 0.004 | 3.870 | 0.049 | 1.007(1.000,1.015) |
HMGB1 | -0.001 | 0.002 | 0.193 | 0.660 | 0.999(0.996,1.002) |
常数项 | -12.300 | 2.777 | 19.620 | <0.001 | <0.001 |
Tab.4 Logistic regression analysis of influencing factors of T2DM complicated with CHD
因素 | β | SE | Wald χ2 | P | OR(95%CI) |
---|---|---|---|---|---|
BMI | 0.213 | 0.062 | 11.690 | 0.001 | 1.237(1.095,1.833) |
年龄 | 0.022 | 0.023 | 0.874 | 0.350 | 1.022(0.976,1.070) |
sTIM-3 | 0.013 | 0.004 | 8.287 | 0.004 | 1.013(1.004,1.021) |
Gal-9 | 0.007 | 0.004 | 3.870 | 0.049 | 1.007(1.000,1.015) |
HMGB1 | -0.001 | 0.002 | 0.193 | 0.660 | 0.999(0.996,1.002) |
常数项 | -12.300 | 2.777 | 19.620 | <0.001 | <0.001 |
[1] | GUO J, SMITH S M. Newer drug treatments for type 2 diabetes[J]. BMJ, 2021, 373:n1171. doi:10.1136/bmj.n1171. |
[2] | THOMAS M C. Type 2 diabetes and heart failure:Challenges and solutions[J]. Curr Cardiol Rev, 2016, 12(3): 249-255. doi:10.2174/1573403x12666160606120254. |
[3] | DIXON K O, DAS M, KUCHROO V K. Human disease mutations highlight the inhibitory function of TIM-3[J]. Nat Genet, 2018, 50(12):1640-1641. doi:10.1038/s41588-018-0289-3. |
[4] | GROSSMAN T B, MINIS E, LOEB-ZEITLIN S E, et al. Soluble T cell immunoglobulin mucin domain 3(sTim-3)in maternal sera:A potential contributor to immune regulation during pregnancy[J]. J Matern Fetal Neonatal Med, 2021, 34(24):4119-4122. doi:10.1080/14767058.2019.1706471. |
[5] | HASTINGS W D, ANDERSON D E, KASSAM N, et al. TIM-3 is expressed on activated human CD4+ T cells and regulates Th1 and Th17 cytokines[J]. Eur J Immunol, 2009, 39:2492-2501. doi:10.1002/eji.200939274. |
[6] | CHEN S, DONG Z, YANG P, et al. Hepatitis B virus X protein stimulates high mobility group box 1 secretion and enhances hepatocellular carcinoma metastasis[J]. Cancer Lett, 2017, 394:22-32. doi:10.1016/j.canlet.2017.02.011. |
[7] | 钟玉梅, 陈洋, 罗小超, 等. Tim-3调控巨噬细胞极化在类风湿性关节炎中的研究进展[J]. 天津医药, 2020, 48(9):898-902. |
ZHONG Y M, CHEN Y, LUO X C, et al. Research progress of Tim-3 regulating the polarization of macrophage in rheumatoid arthritis[J]. Tianjin Med J, 2020, 48(9):898-902. doi:10.11958/20200625. | |
[8] | KAMATA Y, TAKANO K, KISHIHARA E, et al. Distinct clinical characteristics and therapeutic modalities for diabetic ketoacidosis in type 1 and type 2 diabetes mellitus[J]. J Diabetes Complications, 2017, 31(2):468-472. doi:10.1016/j.jdiacomp.2016.06.023. |
[9] | NYAMBUYA T M, DLUDLA P V, MXINWA V, et al. T-cell activation and cardiovascular risk in adults with type 2 diabetes mellitus:A systematic review and meta-analysis[J]. Clin Immunol, 2020, 210:108313. doi:10.1016/j.clim.2019.108313. |
[10] | WANG H, CAO K, LIU S, et al. Tim-3 expression causes NK cell dysfunction in type 2 diabetes patients[J]. Front Immunol, 2022, 13:852436. doi:10.3389/fimmu.2022.852436. |
[11] | 石新慧. 可溶性Tim-3在疾病中的表达及其意义的研究[D]. 北京: 中国人民解放军军事医学科学院基础医学研究所, 2016. |
SHI X H. Expression and clinical significance of soluble Tim-3 in different diseases[D]. Beijing: Institute of Basic Medical Sciences, Academy of Military Medical Sciences, 2016. | |
[12] | ZHANG J, ZHAN F, LIU H L. Expression level and significance of Tim-3 in CD4+ T lymphocytes in peripheral blood of patients with coronary heart disease[J]. Braz J Cardiovasc Surg, 2022, 37(3):350-355. doi:10.21470/1678-9741-2020-0509. |
[13] | HOU N, ZHAO D, LIU Y, et al. Increased expression of T cell immunoglobulin- and mucin domain-containing molecule-3 on natural killer cells in atherogenesis[J]. Atherosclerosis, 2012, 222(1):67-73. doi:10.1016/j.atherosclerosis.2012.02.009. |
[14] | HAO H, HE M, LI J, et al. Upregulation of the Tim-3/Gal-9 pathway and correlation with the development of preeclampsia[J]. Eur J Obstet Gynecol Reprod Biol, 2015, 194:85-91. doi:10.1016/j.ejogrb.2015.08.022. |
[15] | HIRASHIMA M, KASHIO Y, NISHI N, et al. Galectin-9 in physiological and pathological conditions[J]. Glycoconj J, 2002, 19(7/8/9):593-600. doi:10.1023/B:GLYC.0000014090.63206.2f. |
[16] | SAKAI K, KAWATA E, ASHIHARA E, et al. Galectin-9 ameliorates acute GVH disease through the induction of T-cell apoptosis[J]. Eur J Immunol, 2011, 41(1):67-75. doi:10.1002/eji.200939931. |
[17] | MANSOUR A A, RAUCCI F, SAVIANO A, et al. Galectin-9 regulates monosodium urate crystal-induced gouty inflammation through the modulation of Treg/Th17 ratio[J]. Front Immunol, 2021, 12:762016. doi:10.3389/fimmu.2021.762016. |
[18] | SUN L, ZOU S, DING S, et al. Circulating T cells exhibit different TIM3/Galectin-9 expression in patients with obesity and obesity-related diabetes[J]. J Diabetes Res, 2020, 2020:2583257. doi:10.1155/2020/2583257. |
[19] | KUROSE Y, WADA J, KANZAKI M O, et al. Serum galectin-9 levels are elevated in the patients with type 2 diabetes and chronic kidney disease[J]. BMC Nephrol, 2013, 14:23. doi:10.1186/1471-2369-14-23. |
[20] | SU Z, WANG T, ZHU H, et al. HMGB1 modulates Lewis cell autophagy and promotes cell survival via RAGE-HMGB1-Erk1/2 positive feedback during nutrient depletion[J]. Immunobiology, 2015, 220(5):539-544. doi:10.1016/j.imbio.2014.12.009. |
[21] | BEHL T, SHARMA E, SEHGAL A, et al. Expatiating the molecular approaches of HMGB1 in diabetes mellitus:Highlighting signalling pathways via RAGE and TLRs[J]. Mol Biol Rep, 2021, 48(2):1869-1881. doi:10.1007 /s11033-020-06130-x. |
[22] | CHEN Y, QIAO F, ZHAO Y, et al. HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose[J]. Int J Clin Exp Pathol, 2015, 8(6):6683-6691. |
[23] | BENLIER N, ERDOĞAN M B, KEÇIOĞLU S, et al. Association of high mobility group box 1 protein with coronary artery disease[J]. Asian Cardiovasc Thorac Ann, 2019, 27(4):251-255. doi:10.1177/0218492319835725. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||