Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (12): 1300-1306.doi: 10.11958/20230636
• Experimental Research • Previous Articles Next Articles
LONG Guangwen(), ZHANG Qian, YANG Xiulin, SUN Hongpeng, JI Chunling
Received:
2023-04-26
Revised:
2023-07-07
Published:
2023-12-15
Online:
2023-12-22
LONG Guangwen, ZHANG Qian, YANG Xiulin, SUN Hongpeng, JI Chunling. Impacts of miR-141-3p on pulmonary fibrosis in rats with acute respiratory distress syndrome by regulating Keap1-NRF2/ARE signaling pathway[J]. Tianjin Medical Journal, 2023, 51(12): 1300-1306.
CLC Number:
基因名称 | 引物序列(5'→3') | 产物大小/bp |
---|---|---|
miR-141- 3p | 上游:TAGGTTTGGGTGCCAGGTTC 下游:AGATACCAGAAGGGCCCAGG | 78 |
Keap1 | 上游:TCCAGCTCCAGCTCCAAAAAC 下游:AGGACTGCCGATAGTAGCCC | 174 |
U6 | 上游:CTCGCTTCGGCAGCACA 下游:AACGCTTCACGAATTTGCGT | 71 |
GAPDH | 上游:CCCCATACACAGTGTTAGCC 下游:GAGTGATTTTCCCGTCC | 96 |
Tab.1 qPCR primer sequences
基因名称 | 引物序列(5'→3') | 产物大小/bp |
---|---|---|
miR-141- 3p | 上游:TAGGTTTGGGTGCCAGGTTC 下游:AGATACCAGAAGGGCCCAGG | 78 |
Keap1 | 上游:TCCAGCTCCAGCTCCAAAAAC 下游:AGGACTGCCGATAGTAGCCC | 174 |
U6 | 上游:CTCGCTTCGGCAGCACA 下游:AACGCTTCACGAATTTGCGT | 71 |
GAPDH | 上游:CCCCATACACAGTGTTAGCC 下游:GAGTGATTTTCCCGTCC | 96 |
组别 | miR-141-3p | Keap1 mRNA | Keap1 | NRF2 | HO-1 |
---|---|---|---|---|---|
对照组 | 1.03±0.10 | 1.00±0.09 | 0.46±0.05 | 0.88±0.10 | 0.78±0.09 |
模型组 | 0.41±0.04a | 1.59±0.16a | 0.94±0.09a | 0.44±0.06a | 0.37±0.04a |
agomir-NC组 | 0.45±0.06a | 1.61±0.14a | 0.95±0.10a | 0.45±0.07a | 0.35±0.05a |
miR-141-3p agomir组 | 0.88±0.10b | 1.18±0.13b | 0.52±0.06b | 0.81±0.09b | 0.62±0.08b |
F | 152.209** | 52.517** | 115.083** | 81.454** | 92.186** |
Tab.2 Expression of miR-141-3p, Keap1-NRF2/ARE in lung tissue of rats in each group(n=10,$\bar{x}±s$)
组别 | miR-141-3p | Keap1 mRNA | Keap1 | NRF2 | HO-1 |
---|---|---|---|---|---|
对照组 | 1.03±0.10 | 1.00±0.09 | 0.46±0.05 | 0.88±0.10 | 0.78±0.09 |
模型组 | 0.41±0.04a | 1.59±0.16a | 0.94±0.09a | 0.44±0.06a | 0.37±0.04a |
agomir-NC组 | 0.45±0.06a | 1.61±0.14a | 0.95±0.10a | 0.45±0.07a | 0.35±0.05a |
miR-141-3p agomir组 | 0.88±0.10b | 1.18±0.13b | 0.52±0.06b | 0.81±0.09b | 0.62±0.08b |
F | 152.209** | 52.517** | 115.083** | 81.454** | 92.186** |
组别 | 肺损伤评分 | 肺纤维化面积评分 |
---|---|---|
对照组 | 0.00±0.00 | 0.00±0.00 |
模型组 | 3.08±0.36a | 3.29±0.46a |
agomir-NC组 | 3.12±0.34a | 3.32±0.49a |
miR-141-3p agomir组 | 1.24±0.26b | 1.70±0.35b |
F | 110.639** | 44.875** |
Tab.3
组别 | 肺损伤评分 | 肺纤维化面积评分 |
---|---|---|
对照组 | 0.00±0.00 | 0.00±0.00 |
模型组 | 3.08±0.36a | 3.29±0.46a |
agomir-NC组 | 3.12±0.34a | 3.32±0.49a |
miR-141-3p agomir组 | 1.24±0.26b | 1.70±0.35b |
F | 110.639** | 44.875** |
组别 | Hyp/(μg/g) | IL-1β/(ng/L) | TNF-α/(ng/L) | MDA/(mmol/g) | SOD/(U/mg) |
---|---|---|---|---|---|
对照组 | 413.68±52.06 | 17.39±2.14 | 35.62±4.97 | 2.37±0.54 | 22.38±2.61 |
模型组 | 1 068.51±14.27a | 62.83±7.53a | 80.37±9.13a | 5.26±1.23a | 12.75±1.38a |
agomir-NC组 | 1 019.84±10.41a | 61.29±6.32a | 81.43±8.75a | 5.24±1.47a | 13.46±1.41a |
miR-141-3p agomir组 | 583.74±62.08b | 24.58±3.52b | 42.57±5.39b | 2.45±0.47b | 20.64±3.68b |
F | 114.771** | 201.172** | 142.026** | 25.700** | 39.818** |
Tab.4 Comparison of Hyp content, inflammatory factors and oxidative stress levels in lung tissue between the four groups of rats (n=10,$\bar{x}±s$)
组别 | Hyp/(μg/g) | IL-1β/(ng/L) | TNF-α/(ng/L) | MDA/(mmol/g) | SOD/(U/mg) |
---|---|---|---|---|---|
对照组 | 413.68±52.06 | 17.39±2.14 | 35.62±4.97 | 2.37±0.54 | 22.38±2.61 |
模型组 | 1 068.51±14.27a | 62.83±7.53a | 80.37±9.13a | 5.26±1.23a | 12.75±1.38a |
agomir-NC组 | 1 019.84±10.41a | 61.29±6.32a | 81.43±8.75a | 5.24±1.47a | 13.46±1.41a |
miR-141-3p agomir组 | 583.74±62.08b | 24.58±3.52b | 42.57±5.39b | 2.45±0.47b | 20.64±3.68b |
F | 114.771** | 201.172** | 142.026** | 25.700** | 39.818** |
组别 | E-cadherin | N-cadherin | LC3B | Beclin-1 | α-SMA | Col-Ⅰ |
---|---|---|---|---|---|---|
对照组 | 0.96±0.10 | 0.57±0.06 | 0.92±0.10 | 1.03±0.13 | 0.48±0.07 | 0.34±0.05 |
模型组 | 0.54±0.06a | 1.04±0.11a | 0.46±0.05a | 0.52±0.06a | 0.95±0.11a | 1.04±0.13a |
agomir-NC组 | 0.51±0.05a | 1.08±0.10a | 0.49±0.07a | 0.55±0.07a | 0.97±0.14a | 1.02±0.10a |
miR-141-3p agomir组 | 0.83±0.09b | 0.61±0.07b | 0.88±0.09b | 0.84±0.09b | 0.53±0.06b | 0.45±0.06b |
F | 80.331** | 96.950** | 95.098** | 71.048** | 69.146** | 165.444** |
Tab.5 The expression of E-cadherin, N-cadherin, LC3B, Beclin-1, α-SMA and Col-Ⅰ protein in lung tissue of rats in each group (n=10,$\bar{x}±s$)
组别 | E-cadherin | N-cadherin | LC3B | Beclin-1 | α-SMA | Col-Ⅰ |
---|---|---|---|---|---|---|
对照组 | 0.96±0.10 | 0.57±0.06 | 0.92±0.10 | 1.03±0.13 | 0.48±0.07 | 0.34±0.05 |
模型组 | 0.54±0.06a | 1.04±0.11a | 0.46±0.05a | 0.52±0.06a | 0.95±0.11a | 1.04±0.13a |
agomir-NC组 | 0.51±0.05a | 1.08±0.10a | 0.49±0.07a | 0.55±0.07a | 0.97±0.14a | 1.02±0.10a |
miR-141-3p agomir组 | 0.83±0.09b | 0.61±0.07b | 0.88±0.09b | 0.84±0.09b | 0.53±0.06b | 0.45±0.06b |
F | 80.331** | 96.950** | 95.098** | 71.048** | 69.146** | 165.444** |
组别 | miR-141-3p | Keap1 mRNA | Keap1 | NRF2 | HO-1 |
---|---|---|---|---|---|
NC组 | 1.00±0.10 | 1.02±0.09 | 0.48±0.06 | 0.92±0.10 | 0.86±0.09 |
LPS组 | 0.32±0.04a | 1.85±0.19a | 1.04±0.10a | 0.34±0.05a | 0.32±0.04a |
miR-NC组 | 0.35±0.05a | 1.83±0.18a | 1.05±0.11a | 0.35±0.06a | 0.31±0.04a |
miR-141-3p mimics组 | 0.89±0.10b | 1.28±0.14b | 0.57±0.07b | 0.85±0.09b | 0.76±0.08b |
miR-141-3p mimics+pcDNA组 | 0.90±0.11b | 1.25±0.13b | 0.55±0.06b | 0.83±0.08b | 0.74±0.09b |
miR-141-3p mimics+Keap1组 | 0.40±0.06c | 1.74±0.18c | 0.84±0.09c | 0.41±0.05c | 0.43±0.05c |
F | 91.128** | 37.999** | 57.719** | 83.166** | 76.020** |
Tab.6 Changes in expression levels of miR-141-3p and Keap1-NRF2 / ARE in each group of cells(n=6,$\bar{x}±s$)
组别 | miR-141-3p | Keap1 mRNA | Keap1 | NRF2 | HO-1 |
---|---|---|---|---|---|
NC组 | 1.00±0.10 | 1.02±0.09 | 0.48±0.06 | 0.92±0.10 | 0.86±0.09 |
LPS组 | 0.32±0.04a | 1.85±0.19a | 1.04±0.10a | 0.34±0.05a | 0.32±0.04a |
miR-NC组 | 0.35±0.05a | 1.83±0.18a | 1.05±0.11a | 0.35±0.06a | 0.31±0.04a |
miR-141-3p mimics组 | 0.89±0.10b | 1.28±0.14b | 0.57±0.07b | 0.85±0.09b | 0.76±0.08b |
miR-141-3p mimics+pcDNA组 | 0.90±0.11b | 1.25±0.13b | 0.55±0.06b | 0.83±0.08b | 0.74±0.09b |
miR-141-3p mimics+Keap1组 | 0.40±0.06c | 1.74±0.18c | 0.84±0.09c | 0.41±0.05c | 0.43±0.05c |
F | 91.128** | 37.999** | 57.719** | 83.166** | 76.020** |
组别 | IL-1β/(ng/L) | TNF-α/(ng/L) | MDA/(nmol/L) | SOD/(U/L) |
---|---|---|---|---|
NC组 | 20.14±2.81 | 40.62±4.59 | 2.45±0.32 | 25.81±2.63 |
LPS组 | 73.46±7.35a | 91.39±10.13a | 5.63±1.53a | 11.97±1.36a |
miR-NC组 | 71.08±7.48a | 89.73±9.64a | 5.64±1.47a | 12.04±1.39a |
miR-141-3p mimics组 | 31.25±4.07b | 49.56±5.03b | 2.86±0.48b | 19.68±2.46b |
miR-141-3p mimics+pcDNA组 | 35.73±4.28b | 48.41±5.72b | 2.85±0.47b | 20.54±2.63b |
miR-141-3p mimics+Keap1组 | 62.15±7.06c | 71.53±8.04c | 4.36±1.25c | 15.36±1.58c |
F | 91.789** | 52.171** | 11.416** | 40.727** |
Tab.7 Comparison of IL-1β, TNF-α, MDA and SOD levels between the six groups (n=6,$\bar{x}±s$)
组别 | IL-1β/(ng/L) | TNF-α/(ng/L) | MDA/(nmol/L) | SOD/(U/L) |
---|---|---|---|---|
NC组 | 20.14±2.81 | 40.62±4.59 | 2.45±0.32 | 25.81±2.63 |
LPS组 | 73.46±7.35a | 91.39±10.13a | 5.63±1.53a | 11.97±1.36a |
miR-NC组 | 71.08±7.48a | 89.73±9.64a | 5.64±1.47a | 12.04±1.39a |
miR-141-3p mimics组 | 31.25±4.07b | 49.56±5.03b | 2.86±0.48b | 19.68±2.46b |
miR-141-3p mimics+pcDNA组 | 35.73±4.28b | 48.41±5.72b | 2.85±0.47b | 20.54±2.63b |
miR-141-3p mimics+Keap1组 | 62.15±7.06c | 71.53±8.04c | 4.36±1.25c | 15.36±1.58c |
F | 91.789** | 52.171** | 11.416** | 40.727** |
组别 | E-cadherin | N-cadherin | LC3B | Beclin-1 | α-SMA | Col-Ⅰ |
---|---|---|---|---|---|---|
NC组 | 1.16±0.14 | 0.47±0.06 | 0.98±0.10 | 1.13±0.12 | 0.45±0.06 | 0.38±0.04 |
LPS组 | 0.45±0.06a | 1.08±0.12a | 0.45±0.06a | 0.36±0.05a | 1.14±0.12a | 1.06±0.12a |
miR-NC组 | 0.48±0.07a | 1.06±0.11a | 0.47±0.05a | 0.38±0.06a | 1.12±0.10a | 1.04±0.11a |
miR-141-3p mimics组 | 0.91±0.09b | 0.56±0.06b | 0.83±0.09b | 0.88±0.10b | 0.57±0.06b | 0.43±0.05b |
miR-141-3p mimics+pcDNA组 | 0.93±0.11b | 0.58±0.07b | 0.85±0.08b | 0.85±0.09b | 0.56±0.07b | 0.46±0.06b |
miR-141-3p mimics+Keap1组 | 0.56±0.25c | 0.93±0.13c | 0.51±0.08c | 0.48±0.05c | 0.86±0.11c | 0.91±0.10c |
F | 27.623** | 48.701** | 52.012** | 88.257** | 61.578** | 84.890** |
Tab.8 Comparison of E-cadherin, N-cadherin, LC3 B, Beclin-1, α-SMA and Col-Ⅰ protein levels between the six groups(n=6,$\bar{x}±s$)
组别 | E-cadherin | N-cadherin | LC3B | Beclin-1 | α-SMA | Col-Ⅰ |
---|---|---|---|---|---|---|
NC组 | 1.16±0.14 | 0.47±0.06 | 0.98±0.10 | 1.13±0.12 | 0.45±0.06 | 0.38±0.04 |
LPS组 | 0.45±0.06a | 1.08±0.12a | 0.45±0.06a | 0.36±0.05a | 1.14±0.12a | 1.06±0.12a |
miR-NC组 | 0.48±0.07a | 1.06±0.11a | 0.47±0.05a | 0.38±0.06a | 1.12±0.10a | 1.04±0.11a |
miR-141-3p mimics组 | 0.91±0.09b | 0.56±0.06b | 0.83±0.09b | 0.88±0.10b | 0.57±0.06b | 0.43±0.05b |
miR-141-3p mimics+pcDNA组 | 0.93±0.11b | 0.58±0.07b | 0.85±0.08b | 0.85±0.09b | 0.56±0.07b | 0.46±0.06b |
miR-141-3p mimics+Keap1组 | 0.56±0.25c | 0.93±0.13c | 0.51±0.08c | 0.48±0.05c | 0.86±0.11c | 0.91±0.10c |
F | 27.623** | 48.701** | 52.012** | 88.257** | 61.578** | 84.890** |
[1] | MEYER N J, GATTINONI L, CALFEE C S. Acute respiratory distress syndrome[J]. Lancet, 2021, 398(10300):622-637. doi:10.1016/S0140-6736(21)00439-6. |
[2] | ZHANG R, TAN Y, YONG C, et al. Pirfenidone ameliorates early pulmonary fibrosis in LPS-induced acute respiratory distress syndrome by inhibiting endothelial-to-mesenchymal transition via the Hedgehog signaling pathway[J]. Int Immunopharmacol, 2022, 109:108805. doi:10.1016/j.intimp.2022.108805. |
[3] | LIANG Y, XU Y, LU B, et al. Inositol alleviates pulmonary fibrosis by promoting autophagy via inhibiting the HIF-1α-SLUG axis in acute respiratory distress syndrome[J]. Oxid Med Cell Longev, 2022, 2022:1030238. doi:10.1155/2022/1030238. |
[4] | XIA L, ZHU G, HUANG H, et al. LncRNA small nucleolar RNA host gene 16 (SNHG16) silencing protects lipopolysaccharide(LPS)-induced cell injury in human lung fibroblasts WI-38 through acting as miR-141-3p sponge[J]. Biosci Biotechnol Biochem, 2021, 85(5):1077-1087. doi:10.1093/bbb/zbab016. |
[5] | LIU S, PI J, ZHANG Q. Signal amplification in the KEAP1-NRF2-ARE antioxidant response pathway[J]. Redox Biol, 2022, 54:102389. doi:10.1016/j.redox.2022.102389. |
[6] | LI J, LU K, SUN F, et al. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway[J]. J Transl Med, 2021, 19(1):96. doi:10.1186/s12967-021-02745-1. |
[7] | 袁静, 从人愿, 夏金婵, 等. 黄芩苷调节巨噬细胞极化减轻脂多糖诱导的大鼠急性肺损伤[J]. 细胞与分子免疫学杂志, 2022, 38(1):9-15. |
YUAN J, CONG R Y, XIA J C, et al. Baicalin alleviates LPS-induced acute lung injury in rats by regulating macrophage polarization[J]. Chin J Cell Mol Immunol, 2022, 38(1):9-15. doi:10.13423/j.cnki.cjcmi.009281. | |
[8] | 杨贵霞, 李想, 沈锋, 等. 穿心莲内酯对脂多糖刺激下大鼠Ⅱ型肺泡上皮细胞促凝和纤溶抑制相关因子表达的影响研究[J]. 中华危重病急救医学, 2021, 33(2):155-160. |
YANG G X, LI X, SHEN F, et al. Effect of andrographolide on the expression of procoagulant and fibrinolytic inhibition related factors in rat type Ⅱ alveolar epithelial cells stimulated by lipopolysaccharide[J]. Chin Crit Care Med, 2021, 33(2):155-160. doi:10.3760/cma.j.cn121430-20200923-00647. | |
[9] | MU X, WANG H, LI H. Silencing of long noncoding RNA H19 alleviates pulmonary injury, inflammation, and fibrosis of acute respiratory distress syndrome through regulating the microRNA-423-5p/FOXA1 axis[J]. Exp Lung Res, 2021, 47(4):183-197. doi:10.1080/01902148.2021.1887967. |
[10] | ZHANG X, YE L, TANG W, et al. Wnt/β-catenin participates in the repair of acute respiratory distress syndrome-associated early pulmonary fibrosis via mesenchymal stem cell microvesicles[J]. Drug Des Devel Ther, 2022, 16:237-247. doi:10.2147/DDDT.S344309. |
[11] | BAO X, LIU X, LIU N, et al. Inhibition of EZH2 prevents acute respiratory distress syndrome(ARDS)-associated pulmonary fibrosis by regulating the macrophage polarization phenotype[J]. Respir Res, 2021, 22(1):194. doi:10.1186/s12931-021-01785-x. |
[12] | WANG X, LIU F, XU M, et al. Penehyclidine hydrochloride alleviates lipopolysaccharide-induced acute respiratory distress syndrome in cells via regulating autophagy-related pathway[J]. Mol Med Rep, 2021, 23(2):100. doi:10.3892/mmr.2020.11739. |
[13] | XIE T, XU Q, WAN H, et al. Lipopolysaccharide promotes lung fibroblast proliferation through autophagy inhibition via activation of the PI3K-Akt-mTOR pathway[J]. Lab Invest, 2019, 99(5):625-633. doi:10.1038/s41374-018-0160-2. |
[14] | HILL C, LI J, LIU D, et al. Autophagy inhibition-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis[J]. Cell Death Dis, 2019, 10(8):591. doi:10.1038/s41419-019-1820-x. |
[15] | ZHANG B, ZHAO C, HOU L, et al. Silencing of the lncRNA TUG1 attenuates the epithelial-mesenchymal transition of renal tubular epithelial cells by sponging miR-141-3p via regulating β-catenin[J]. Am J Physiol Renal Physiol, 2020, 319(6):F1125-F1134. doi:10.1152/ajprenal.00321.2020. |
[16] | ZHU L, CHEN M, WANG W, et al. microRNA-141-3p mediates epithelial cell proliferation,apoptosis,and epithelial-mesenchymal transition and alleviates pulmonary fibrosis in mice via Spred2[J]. Histol Histopathol, 2023:18585. doi:10.14670/HH-18-585. |
[17] | QIAN W, CAI X, QIAN Q, et al. lncRNA ZEB1-AS1 promotes pulmonary fibrosis through ZEB1-mediated epithelial-mesenchymal transition by competitively binding miR-141-3p[J]. Cell Death Dis, 2019, 10(2):129. doi:10.1038/s41419-019-1339-1. |
[18] | HUANG C Y, DENG J S, HUANG W C, et al. Attenuation of lipopolysaccharide-induced acute lung injury by hispolon in mice, through regulating the TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 pathways, and suppressing oxidative stress-mediated ER stress-induced apoptosis and autophagy[J]. Nutrients, 2020, 12(6):1742. doi:10.3390/nu12061742. |
[19] | ZHENG F, WU X, ZHANG J, et al. Sevoflurane reduces lipopolysaccharide-induced apoptosis and pulmonary fibrosis in the RAW264.7 cells and mice models to ameliorate acute lung injury by eliminating oxidative damages[J]. Redox Rep, 2022, 27(1):139-149. doi:10.1080/13510002.2022.2096339. |
[20] | DONG Z, YIN E G, YANG M, et al. Role and mechanism of Keap1/Nrf2 signaling pathway in the regulation of autophagy in alleviating pulmonary fibrosis[J]. Comput Intell Neurosci, 2022, 2022:3564871. doi:10.1155/2022/3564871. |
[21] | ZHANG C, KONG X, MA D. miR-141-3p inhibits vascular smooth muscle cell proliferation and migration via regulating Keap1/Nrf2/HO-1 pathway[J]. IUBMB Life, 2020, 72(10):2167-2179. doi:10.1002/iub.2374. |
[1] | LI Xin, LI Xue, WANG An. Effects of chrysotile on expression of Wnt5a, p16 and p21 in endothelial cells [J]. Tianjin Medical Journal, 2024, 52(7): 679-682. |
[2] | LIU Yingying, JIANG Qiannan, ZHANG Yanyan, LIU Xiuxiang. Effect of histologic chorioamnionitis on clinical outcomes in preterm infants with a gestational age less than 34 weeks: a propensity score matching study [J]. Tianjin Medical Journal, 2024, 52(1): 87-90. |
[3] | HUANG Chengjun, XU Yu, MI Le, WANG Xiujun, LIU Zhenfeng, WANG Hongman. Research progress of autophagy in acute respiratory distress syndrome [J]. Tianjin Medical Journal, 2023, 51(6): 668-672. |
[4] | FENG Songqiao, HE Yewei, WANG Yan. Expression levels of plasma SIRT-1 and syndecan-1 in patients with sepsis-induced ALI/ARDS and their effect on prognosis [J]. Tianjin Medical Journal, 2023, 51(3): 311-314. |
[5] | ZHANG Cen, WANG Zhihua, YANG Lei. Effects of Mycoplasma pneumoniae community acquired respiratory distress syndrome toxin on monocyte subsets [J]. Tianjin Medical Journal, 2023, 51(10): 1080-1083. |
[6] | HAN Jiao, WANG Huabing, XU Lingwen, DONG Fang. The role of γ-secretase inhibitor in pulmonary fibrosis epithelial-mesenchymal transition [J]. Tianjin Medical Journal, 2022, 50(9): 917-920. |
[7] | LONG Guangwen, ZHANG Qian, YANG Xiulin, JI Chunling, DONG Yukang. The effect and mechanism of inhibiting miR-33 expression on pulmonary fibrosis in rats with acute respiratory distress syndrome [J]. Tianjin Medical Journal, 2022, 50(9): 921-926. |
[8] | HUANG Bin, ZHANG Jun, ZHENG Jinxu△, DING Manling, WU Yan. The study on the mechanism of circ_0007762 regulating autophagy of lung fibroblasts through miR-18a-5p [J]. Tianjin Medical Journal, 2022, 50(6): 571-578. |
[9] | SHU Xiaoyi, LI Youxia, FAN Shaohui, WANG Hongman. Research progress on the role of high mobility group protein B1 and Toll- like receptor 4 in ARDS [J]. Tianjin Medical Journal, 2022, 50(4): 433-438. |
[10] | ZHU Lina, WANG Jupeng, SONG Yalin, FENG Jihong, MA Mingkun, WEN Xuehong△. Application of antineutrophil cytoplasmic antibodies and related laboratory parameters in patients with pulmonary fibrosis [J]. Tianjin Medical Journal, 2022, 50(1): 94-98. |
[11] | WANG Yu-liang△, WANG Feng, GENG Jie. Cytokine and cytokine storm #br# [J]. Tianjin Medical Journal, 2020, 48(6): 494-499. |
[12] | ZHAO Tie-jun, SONG Gui-qin, ZHANG Hao-ting, CUI Wei-liang, HUANG Yong, WANG Wen-dong, ZHANG Xiao-yun. The effect of neutralizing interleukin-17 on the expressions of collagen and#br# apoptosis-related factors in model mice with idiopathic pulmonary fibrosis #br# [J]. Tianjin Medical Journal, 2020, 48(4): 258-262. |
[13] | ZHAO Ya-ping, MA Hui, CAO Jie△. The potential mechanism of coronavirus disease 2019 and the treatment effect of mesenchymal stem cells [J]. Tianjin Medical Journal, 2020, 48(10): 920-924. |
[14] | ZHOU Fang, LU Xi-ke, ZHANG Xun, WANG Zheng, LI Yue-chuan. Advances in diagnosis and treatment of acute exacerbation of IPF after lung cancer surgery [J]. Tianjin Medical Journal, 2019, 47(7): 781-784. |
[15] | ZHU Liu-jie, REN Guang-li, XIE Cong, ZHANG Qing-mei, XIE Guo-qiang. Efficacy analysis of two different noninvasive ventilation strategies in neonatal respiratory distress syndrome [J]. Tianjin Medical Journal, 2019, 47(10): 1067-1072. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||