Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (6): 578-583.doi: 10.11958/20230889
• Experimental Research • Previous Articles Next Articles
CHEN Yujie(), HUANG Xia, DENG Bolin, JIA Wenwen(
)
Received:
2023-06-12
Revised:
2023-08-30
Published:
2024-06-15
Online:
2024-06-06
Contact:
△E-mail: CHEN Yujie, HUANG Xia, DENG Bolin, JIA Wenwen. Effects of acacetin on angiogenesis in diabetes retinopathy rats by regulating Hippo signaling pathway[J]. Tianjin Medical Journal, 2024, 52(6): 578-583.
CLC Number:
组别 | 体质量/g | FBG/(mmol/L) |
---|---|---|
对照组 | 432.68±45.09 | 5.27±0.62 |
DR组 | 285.93±29.65a | 23.59±2.61a |
Aca低剂量组 | 358.76±36.92b | 15.62±1.61b |
Aca中剂量组 | 382.05±39.02bc | 10.07±1.14bc |
Aca高剂量组 | 417.25±42.83bcd | 6.37±0.72bcd |
Verteporfin组 | 403.86±41.09bcd | 6.48±0.68bcd |
F | 28.295** | 253.633** |
Tab.1 Comparison of body weight and FBG of rats between the six groups
组别 | 体质量/g | FBG/(mmol/L) |
---|---|---|
对照组 | 432.68±45.09 | 5.27±0.62 |
DR组 | 285.93±29.65a | 23.59±2.61a |
Aca低剂量组 | 358.76±36.92b | 15.62±1.61b |
Aca中剂量组 | 382.05±39.02bc | 10.07±1.14bc |
Aca高剂量组 | 417.25±42.83bcd | 6.37±0.72bcd |
Verteporfin组 | 403.86±41.09bcd | 6.48±0.68bcd |
F | 28.295** | 253.633** |
组别 | VEGF/(ng/L) | Ang-2/(μg/L) |
---|---|---|
对照组 | 105.32±10.38 | 6.38±0.66 |
DR组 | 163.58±17.14a | 11.92±1.24a |
Aca低剂量组 | 139.74±13.18b | 9.27±1.01b |
Aca中剂量组 | 125.07±12.49bc | 8.04±0.91bc |
Aca高剂量组 | 109.31±11.26bcd | 7.05±0.77bc |
Verteporfin组 | 110.83±11.75bcd | 7.48±0.78bcd |
F | 30.569** | 47.819** |
Tab.2 Comparison of VEGF and Ang-2 levels between the six groups
组别 | VEGF/(ng/L) | Ang-2/(μg/L) |
---|---|---|
对照组 | 105.32±10.38 | 6.38±0.66 |
DR组 | 163.58±17.14a | 11.92±1.24a |
Aca低剂量组 | 139.74±13.18b | 9.27±1.01b |
Aca中剂量组 | 125.07±12.49bc | 8.04±0.91bc |
Aca高剂量组 | 109.31±11.26bcd | 7.05±0.77bc |
Verteporfin组 | 110.83±11.75bcd | 7.48±0.78bcd |
F | 30.569** | 47.819** |
组别 | VEGF | HIF-1α | VCAM-1 |
---|---|---|---|
对照组 | 0.42±0.09 | 0.58±0.06 | 0.38±0.04 |
DR组 | 1.43±0.15a | 1.26±0.12a | 1.36±0.18a |
Aca低剂量组 | 0.91±0.09b | 0.95±0.09b | 0.99±0.10b |
Aca中剂量组 | 0.73±0.07bc | 0.73±0.08bc | 0.61±0.07bc |
Aca高剂量组 | 0.52±0.06bcd | 0.61±0.07bcd | 0.45±0.05bcd |
Verteporfin组 | 0.59±0.06bcd | 0.63±0.08bcd | 0.43±0.04bcd |
F | 95.456** | 57.885** | 103.997** |
Tab.3 Comparison of VEGF, HIF-1α and VCAM-1 protein expression between six groups of rats
组别 | VEGF | HIF-1α | VCAM-1 |
---|---|---|---|
对照组 | 0.42±0.09 | 0.58±0.06 | 0.38±0.04 |
DR组 | 1.43±0.15a | 1.26±0.12a | 1.36±0.18a |
Aca低剂量组 | 0.91±0.09b | 0.95±0.09b | 0.99±0.10b |
Aca中剂量组 | 0.73±0.07bc | 0.73±0.08bc | 0.61±0.07bc |
Aca高剂量组 | 0.52±0.06bcd | 0.61±0.07bcd | 0.45±0.05bcd |
Verteporfin组 | 0.59±0.06bcd | 0.63±0.08bcd | 0.43±0.04bcd |
F | 95.456** | 57.885** | 103.997** |
组别 | YAP | p-YAP | LATS2 | TAZ | TEAD1 |
---|---|---|---|---|---|
对照组 | 0.53±0.06 | 0.93±0.09 | 0.85±0.09 | 0.73±0.08 | 0.48±0.06 |
DR组 | 1.35±0.14a | 0.35±0.04a | 0.35±0.04a | 1.53±0.16a | 1.29±0.15a |
Aca低剂量组 | 0.98±0.10b | 0.48±0.05b | 0.98±0.10b | 1.24±0.14b | 0.93±0.09b |
Aca中剂量组 | 0.75±0.08bc | 0.67±0.07bc | 0.75±0.08bc | 0.95±0.10bc | 0.72±0.07bc |
Aca高剂量组 | 0.57±0.06bcd | 0.88±0.09bcd | 0.57±0.06bcd | 0.79±0.08bcd | 0.53±0.06bcd |
Verteporfin组 | 0.55±0.08bcd | 0.87±0.08bcd | 0.55±0.08bcd | 0.81±0.08bcd | 0.58±0.06bcd |
F | 76.193** | 65.149** | 52.165** | 47.776** | 73.858** |
Tab.4 Comparison of Hippo signaling pathway protein expression between six groups of rats
组别 | YAP | p-YAP | LATS2 | TAZ | TEAD1 |
---|---|---|---|---|---|
对照组 | 0.53±0.06 | 0.93±0.09 | 0.85±0.09 | 0.73±0.08 | 0.48±0.06 |
DR组 | 1.35±0.14a | 0.35±0.04a | 0.35±0.04a | 1.53±0.16a | 1.29±0.15a |
Aca低剂量组 | 0.98±0.10b | 0.48±0.05b | 0.98±0.10b | 1.24±0.14b | 0.93±0.09b |
Aca中剂量组 | 0.75±0.08bc | 0.67±0.07bc | 0.75±0.08bc | 0.95±0.10bc | 0.72±0.07bc |
Aca高剂量组 | 0.57±0.06bcd | 0.88±0.09bcd | 0.57±0.06bcd | 0.79±0.08bcd | 0.53±0.06bcd |
Verteporfin组 | 0.55±0.08bcd | 0.87±0.08bcd | 0.55±0.08bcd | 0.81±0.08bcd | 0.58±0.06bcd |
F | 76.193** | 65.149** | 52.165** | 47.776** | 73.858** |
[1] | LIN K Y, HSIH W H, LIN Y B, et al. Update in the epidemiology,risk factors,screening,and treatment of diabetic retinopathy[J]. J Diabetes Investig, 2021, 12(8):1322-1325. doi:10.1111/jdi.13480. |
[2] | KAŠTELAN S, OREŠKOVIĆ I, BIŠĆAN F, et al. Inflammatory and angiogenic biomarkers in diabetic retinopathy[J]. Biochem Med(Zagreb), 2020, 30(3):030502-030516. doi:10.11613/BM.2020.030502. |
[3] | WANG Y, LIU L, GE M, et al. Acacetin attenuates the pancreatic and hepatorenal dysfunction in type 2 diabetic rats induced by high-fat diet combined with streptozotocin[J]. J Nat Med, 2023, 77(3):446-454. doi:10.1007/s11418-022-01675-6. |
[4] | ZHOU Y, FAN G, ZHANG Y, et al. Identification of potential Molecular targets and active ingredients of Mingmu Dihuang Pill for the treatment of diabetic retinopathy based on network pharmacology[J]. Biomed Res Int, 2022, 1(1):1-18. doi:10.1155/2022/2896185. |
[5] | WU W, ZIEMANN M, HUYNH K, et al. Activation of Hippo signaling pathway mediates mitochondria dysfunction and dilated cardiomyopathy in mice[J]. Theranostics, 2021, 11(18):8993-9008. doi:10.7150/thno.62302. |
[6] | HAO G M, LV T T, WU Y, et al. The Hippo signaling pathway:a potential therapeutic target is reversed by a Chinese patent drug in rats with diabetic retinopathy[J]. BMC Complement Altern Med, 2017, 17(1):187-196. doi:10.1186/s12906-017-1678-3. |
[7] | PULKKINEN H H, KIEMA M, LAPPALAINEN J P, et al. BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF[J]. Angiogenesis, 2021, 24(1):129-144. doi:10.1007/s10456-020-09748-4. |
[8] | CHAI G R, LIU S, YANG H W, et al. Quercetin protects against diabetic retinopathy in rats by inducing heme oxygenase-1 expression[J]. Neural Regen Res, 2021, 16(7):1344-1350. doi:10.4103/1673-5374.301027. |
[9] | SONG F, MAO Y J, HU Y, et al. Acacetin attenuates diabetes-induced cardiomyopathy by inhibiting oxidative stress and energy metabolism via PPAR-α/AMPK pathway[J]. Eur J Pharmacol, 2022, 922:174916. doi:10.1016/j.ejphar.2022.174916. |
[10] | LIU Y, LU T, ZHANG C, et al. Activation of YAP attenuates hepatic damage and fibrosis in liver ischemia-reperfusion injury[J]. J Hepatol, 2019, 71(4):719-730. doi:10.1016/j.jhep.2019.05.029. |
[11] | FENG Y, WANG C, WANG G. Inhibition of KCTD10 affects diabetic retinopathy progression by reducing VEGF and affecting angiogenesis[J]. Genet Res(Camb), 2022, 1(1):1-10. doi:10.1155/2022/4112307. |
[12] | ARRIGO A, ARAGONA E, BANDELLO F. VEGF-targeting drugs for the treatment of retinal neovascularization in diabetic retinopathy[J]. Ann Med, 2022, 54(1):1089-1111. doi:10.1080/07853890.2022.2064541. |
[13] | YANG Y, LIU Y, LI Y, et al. MicroRNA-15b targets VEGF and inhibits angiogenesis in proliferative diabetic retinopathy[J]. J Clin Endocrinol Metab, 2020, 105(11):3404-3415. doi:10.1210/clinem/dgaa538. |
[14] | MIN J, ZENG T, ROUX M, et al. The role of HIF1α-PFKFB3 pathway in diabetic retinopathy[J]. J Clin Endocrinol Metab, 2021, 106(9):2505-2519. doi:10.1210/clinem/dgab362. |
[15] | AI X, YU P, LUO L, et al. Berberis dictyophylla F. inhibits angiogenesis and apoptosis of diabetic retinopathy via suppressing HIF-1α/VEGF/DLL-4/Notch-1 pathway[J]. J Ethnopharmacol, 2022, 296:115453. doi:10.1016/j.jep.2022.115453. |
[16] | FERRO DESIDERI L, TRAVERSO C E, NICOLÒ M. The emerging role of the Angiopoietin-Tie pathway as therapeutic target for treating retinal diseases[J]. Expert Opin Ther Targets, 2022, 26(2):145-154. doi:10.1080/14728222.2022.2036121. |
[17] | EIDSON L N, GAO Q, QU H, et al. Poldip2 controls leukocyte infiltration into the ischemic brain by regulating focal adhesion kinase-mediated VCAM-1 induction[J]. Sci Rep, 2021, 11(1):5533-5545. doi:10.1038/s41598-021-84987-z. |
[18] | WANG X, XIANG J, HUANG G, et al. Inhibition of podocytes DPP4 activity Is a potential mechanism of Lobeliae Chinensis Herba in treating diabetic kidney disease[J]. Front Pharmacol, 2021, 12:779652. doi:10.3389/fphar.2021.779652. |
[19] | ALFWUAIRES M, ELSAWY H, SEDKY A. Acacetin inhibits cell proliferation and induces apoptosis in human hepatocellular carcinoma cell Lines[J]. Molecules, 2022, 27(17):5361-5374. doi:10.3390/molecules27175361. |
[20] | SINGH S, MEENA A, LUQMAN S, et al. Acacetin and pinostrobin as a promising inhibitor of cancer-associated protein kinases[J]. Food Chem Toxicol, 2021, 151:112091. doi:10.1016/j.fct.2021.112091. |
[21] | SONG L, HUANG Y, ZHANG X, et al. Downregulation of microRNA-224-3p hampers retinoblastoma progression via activation of the Hippo-YAP signaling pathway by increasing LATS2[J]. Invest Ophthalmol Vis Sci, 2020, 61(3):32-43. doi:10.1167/iovs.61.3.32. |
[22] | AZAD T, JANSE VAN RENSBURG H J, LIGHTBODY E D, et al. A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis[J]. Nat Commun, 2018, 9(1):1061-1075. doi:10.1038/s41467-018-03278-w. |
[23] | ZHU X, SHAN Y, YU M, et al. Tetramethylpyrazine ameliorates peritoneal angiogenesis by regulating VEGF/Hippo/YAP signaling[J]. Front Pharmacol, 2021, 12:649581. doi:10.3389/fphar.2021.649581. |
[24] | FENG Y, ZOU R, ZHANG X, et al. YAP promotes ocular neovascularization by modifying PFKFB3-driven endothelial glycolysis[J]. Angiogenesis, 2021, 24(3):489-504. doi:10.1007/s10456-020-09760-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||