Tianjin Medical Journal ›› 2025, Vol. 53 ›› Issue (5): 449-455.doi: 10.11958/20250340
• Cell and Molecular Biology • Next Articles
MA Chunmei1,2(), YU Peng3, ZHANG Qicheng4, YANG Lei5, LI Dihua5, TAN Jian1, MENG Zhaowei1,△(
)
Received:
2025-01-22
Revised:
2025-03-13
Published:
2025-05-15
Online:
2025-05-28
Contact:
△ E-mail:zmeng@tmu.edu.cn
MA Chunmei, YU Peng, ZHANG Qicheng, YANG Lei, LI Dihua, TAN Jian, MENG Zhaowei. Mechanism study of benzyl isothiocyanate combined with sorafenib in the treatment of anaplastic thyroid cancer[J]. Tianjin Medical Journal, 2025, 53(5): 449-455.
CLC Number:
基因名称 | 引物序列(5'→3') | 产物大小/bp |
---|---|---|
LC3B | 上游:AACATGAGCGAGTTGGTCAAG 下游:GCTCGTAGATGTCCGCGAT | 127 |
GAPDH | 上游:GGAGCGAGATCCCTCCAAAAT 下游:GGCTGTTGTCATACTTCTCATGG | 197 |
Tab.1 Primer sequence
基因名称 | 引物序列(5'→3') | 产物大小/bp |
---|---|---|
LC3B | 上游:AACATGAGCGAGTTGGTCAAG 下游:GCTCGTAGATGTCCGCGAT | 127 |
GAPDH | 上游:GGAGCGAGATCCCTCCAAAAT 下游:GGCTGTTGTCATACTTCTCATGG | 197 |
组别 | 8505C | CAL-62 |
---|---|---|
对照组 | 100.00±0.00 | 100.00±0.00 |
BITC组 | 83.24±1.43a | 82.64±0.90a |
Sor组 | 79.78±1.12a | 82.85±0.25a |
BITC+Sor组 | 66.48±0.80abc | 66.22±1.27abc |
F | 579.069** | 920.836** |
Tab.2 Comparison of ATC cell activity between the four groups
组别 | 8505C | CAL-62 |
---|---|---|
对照组 | 100.00±0.00 | 100.00±0.00 |
BITC组 | 83.24±1.43a | 82.64±0.90a |
Sor组 | 79.78±1.12a | 82.85±0.25a |
BITC+Sor组 | 66.48±0.80abc | 66.22±1.27abc |
F | 579.069** | 920.836** |
组别 | 8505C | CAL-62 |
---|---|---|
对照组 | 4.91±0.60 | 3.35±1.04 |
BITC组 | 14.71±1.43a | 17.98±2.84a |
Sor组 | 12.14±2.09a | 17.35±1.81a |
BITC+Sor组 | 39.49±3.97abc | 37.77±9.96abc |
F | 118.068** | 21.512** |
Tab.3 Comparison of apoptosis rate of ATC cells between the four groups
组别 | 8505C | CAL-62 |
---|---|---|
对照组 | 4.91±0.60 | 3.35±1.04 |
BITC组 | 14.71±1.43a | 17.98±2.84a |
Sor组 | 12.14±2.09a | 17.35±1.81a |
BITC+Sor组 | 39.49±3.97abc | 37.77±9.96abc |
F | 118.068** | 21.512** |
组别 | 8505C | CAL-62 |
---|---|---|
对照组 | 1.02±0.01 | 1.00±0.73 |
BITC组 | 9.00±0.89a | 8.54±0.73a |
Sor组 | 8.00±0.55a | 9.27±1.47a |
BITC+Sor组 | 40.28±3.40abc | 44.16±0.28abc |
F | 289.683** | 1 615.110** |
Tab.4 Effect of BITC and Sor combined treatment on LC3B gene expression in ATC cells
组别 | 8505C | CAL-62 |
---|---|---|
对照组 | 1.02±0.01 | 1.00±0.73 |
BITC组 | 9.00±0.89a | 8.54±0.73a |
Sor组 | 8.00±0.55a | 9.27±1.47a |
BITC+Sor组 | 40.28±3.40abc | 44.16±0.28abc |
F | 289.683** | 1 615.110** |
组别 | 8505C | ||
---|---|---|---|
LC3BⅡ | Beclin-1 | NF-κB | |
对照组 | 0.35±0.08 | 1.19±0.11 | 1.14±0.12 |
BITC组 | 0.81±0.03a | 0.88±0.07a | 0.93±0.08a |
Sor组 | 0.82±0.06a | 0.79±0.10a | 0.92±0.10a |
BITC+Sor组 | 1.31±0.33abc | 0.54±0.08abc | 0.58±0.04abc |
F | 15.474** | 24.406** | 26.066** |
组别 | CAL-62 | ||
LC3BⅡ | Beclin-1 | NF-κB | |
对照组 | 0.28±0.04 | 1.12±0.10 | 1.19±0.17 |
BITC组 | 0.85±0.13a | 0.81±0.09a | 0.90±0.01a |
Sor组 | 0.73±0.06a | 0.73±0.02a | 0.88±0.07a |
BITC+Sor组 | 2.09±0.28abc | 0.53±0.07abc | 0.61±0.07abc |
F | 72.391** | 29.713** | 17.641** |
Tab.5 Comparison of expression levels of LC3B, Beclin-1 and NF-κB protein between the four groups
组别 | 8505C | ||
---|---|---|---|
LC3BⅡ | Beclin-1 | NF-κB | |
对照组 | 0.35±0.08 | 1.19±0.11 | 1.14±0.12 |
BITC组 | 0.81±0.03a | 0.88±0.07a | 0.93±0.08a |
Sor组 | 0.82±0.06a | 0.79±0.10a | 0.92±0.10a |
BITC+Sor组 | 1.31±0.33abc | 0.54±0.08abc | 0.58±0.04abc |
F | 15.474** | 24.406** | 26.066** |
组别 | CAL-62 | ||
LC3BⅡ | Beclin-1 | NF-κB | |
对照组 | 0.28±0.04 | 1.12±0.10 | 1.19±0.17 |
BITC组 | 0.85±0.13a | 0.81±0.09a | 0.90±0.01a |
Sor组 | 0.73±0.06a | 0.73±0.02a | 0.88±0.07a |
BITC+Sor组 | 2.09±0.28abc | 0.53±0.07abc | 0.61±0.07abc |
F | 72.391** | 29.713** | 17.641** |
组别 | 移植瘤质量/mg(n=5) | 移植瘤体积/mm3(n=5) | |||
---|---|---|---|---|---|
对照组 | 73.70±21.54 | 171.43±59.75 | |||
BITC组 | 43.40±15.73a | 103.19±17.55a | |||
Sor组 | 43.60±17.74a | 102.02±21.61a | |||
BITC+Sor组 | 14.00±3.54abc | 53.12±15.29abc | |||
F | 11.321** | 10.329** | |||
组别 | 蛋白(n=3) | ||||
LC3BⅡ | Beclin-1 | NF-κB | |||
对照组 | 0.28±0.01 | 1.08±0.06 | 1.12±0.11 | ||
BITC组 | 0.70±0.08a | 0.87±0.04a | 0.91±0.02a | ||
Sor组 | 0.57±0.04a | 0.81±0.07a | 0.86±0.063a | ||
BITC+Sor组 | 1.09±0.20abc | 0.53±0.11abc | 0.62±0.11abc | ||
F | 27.520** | 27.012** | 19.378** |
Tab.6 Comparison of weight, volume and protein expression of transplanted tumor between the four groups of nude mice
组别 | 移植瘤质量/mg(n=5) | 移植瘤体积/mm3(n=5) | |||
---|---|---|---|---|---|
对照组 | 73.70±21.54 | 171.43±59.75 | |||
BITC组 | 43.40±15.73a | 103.19±17.55a | |||
Sor组 | 43.60±17.74a | 102.02±21.61a | |||
BITC+Sor组 | 14.00±3.54abc | 53.12±15.29abc | |||
F | 11.321** | 10.329** | |||
组别 | 蛋白(n=3) | ||||
LC3BⅡ | Beclin-1 | NF-κB | |||
对照组 | 0.28±0.01 | 1.08±0.06 | 1.12±0.11 | ||
BITC组 | 0.70±0.08a | 0.87±0.04a | 0.91±0.02a | ||
Sor组 | 0.57±0.04a | 0.81±0.07a | 0.86±0.063a | ||
BITC+Sor组 | 1.09±0.20abc | 0.53±0.11abc | 0.62±0.11abc | ||
F | 27.520** | 27.012** | 19.378** |
[1] | FALLAHI P, FERRARI S M, GALDIERO M R, et al. Molecular targets of tyrosine kinase inhibitors in thyroid cancer[J]. Semin Cancer Biol, 2022, 79:180-196. doi:10.1016/j.semcancer.2020.11.013. |
[2] | MANIAKAS A, DADU R, BUSAIDY N L, et al. Evaluation of overall survival in patients with anaplastic thyroid carcinoma,2000-2019[J]. JAMA Oncol, 2020, 6(9):1397-1404. doi:10.1001/jamaoncol.2020.3362. |
[3] | ITO Y, ONODA N, ITO K I, et al. Sorafenib in Japanese patients with locally advanced or metastatic medullary thyroid carcinoma and anaplastic thyroid carcinoma[J]. Thyroid, 2017, 27(9):1142-1148. doi:10.1089/thy.2016.0621. |
[4] | RAO C V. Benzyl isothiocyanate:double trouble for breast cancer cells[J]. Cancer Prev Res(Phila), 2013, 6(8):760-763. doi:10.1158/1940-6207.CAPR-13-0242. |
[5] | LIU B N, YAN H Q, WU X, et al. Apoptosis induced by benzyl isothiocyanate in gefitinib-resistant lung cancer cells is associated with Akt/MAPK pathways and generation of reactive oxygen species[J]. Cell Biochem Biophys, 2013, 66(1):81-92. doi:10.1007/s12013-012-9456-9. |
[6] | 马春梅, 韩朵, 张惠英, 等. 异硫氰酸苄酯治疗未分化甲状腺癌的机制研究[J]. 中华内分泌代谢杂志, 2024, 40(11):966-977. |
MA C M, HAN D, ZHANG H Y, et al. Mechanism of benzyl isothiocyanate in the treatment of undifferentiated thyroid cancer[J]. Chinese Journal of Endocrinology and Metabolism, 2024, 40(11):966-977. doi:10.3760/cma.j.cn311282-20240225-00077. | |
[7] | ZHANG Q C, PAN Z H, LIU B N, et al. Benzyl isothiocyanate induces protective autophagy in human lung cancer cells through an endoplasmic reticulum stress-mediated mechanism[J]. Acta Pharmacol Sin, 2017, 38(4):539-550. doi:10.1038/aps.2016.146. |
[8] | LI W, DONG X, HE C, et al. LncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and is positively regulated by miR-21 in hepatocellular carcinoma cells[J]. J Exp Clin Cancer Res, 2019, 38(1):183. doi:10.1186/s13046-019-1177-0. |
[9] | BOUCAI L, ZAFEREO M, CABANILLAS M E. Thyroid cancer:a Review[J]. JAMA, 2024, 331(5):425-435. doi:10.1001/jama.2023.26348. |
[10] | BIBLE K C, KEBEBEW E, BRIERLEY J, et al. 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer[J]. Thyroid, 2021, 31(3):337-386. doi:10.1089/thy.2020.0944. |
[11] | DUDA D G, JAIN R K. Revisiting antiangiogenic multikinase inhibitors in the era of immune checkpoint blockade:the case of Sorafenib[J]. Cancer Res, 2022, 82(20):3665-3667. doi:10.1158/0008-5472.CAN-22-2639. |
[12] | SAVVIDES P, NAGAIAH G, LAVERTU P, et al. Phase II trial of sorafenib in patients with advanced anaplastic carcinoma of the thyroid[J]. Thyroid, 2013, 23(5):600-604. doi:10.1089/thy.2012.0103. |
[13] | DUNTAS L H, BERNARDINI R. Sorafenib:rays of hope in thyroid cancer[J]. Thyroid, 2010, 20(12):1351-1358. doi:10.1089/thy.2010.0056. |
[14] | CHEN G, NICULA D, RENKO K, et al. Synergistic anti-proliferative effect of metformin and sorafenib on growth of anaplastic thyroid cancer cells and their stem cells[J]. Oncol Rep, 2015, 33(4):1994-2000. doi:10.3892/or.2015.3805. |
[15] | DINH T N, PARAT M O, ONG Y S, et al. Anticancer activities of dietary benzyl isothiocyanate:A comprehensive review[J]. Pharmacol Res, 2021, 169:105666. doi:10.1016/j.phrs.2021.105666. |
[16] | CHANG K F, HUANG X F, LIN Y L, et al. Positively charged nanoparticle delivery of n-butylidenephthalide enhances antitumor effect in hepatocellular carcinoma[J]. Biomed Res Int, 2021, 2021:8817875. doi:10.1155/2021/8817875. |
[17] | ABDULGHANI J, GOKARE P, GALLANT J N, et al. Sorafenib and Quinacrine target anti-apoptotic protein MCL1:a poor prognostic marker in anaplastic thyroid cancer(ATC)[J]. Clin Cancer Res, 2016, 22(24):6192-6203. doi:10.1158/1078-0432.CCR-15-2792. |
[18] | WU C L, HUANG A C, YANG J S, et al. Benzyl isothiocyanate(BITC)and phenethyl isothiocyanate(PEITC)-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of caspase-3,mitochondria dysfunction and nitric oxide(NO)in human osteogenic sarcoma U-2 OS cells[J]. J Orthop Res, 2011, 29(8):1199-1209. doi:10.1002/jor.21350. |
[19] | HUANG S H, WU L W, HUANG A C, et al. Benzyl isothiocyanate(BITC)induces G2/M phase arrest and apoptosis in human melanoma A375.S2 cells through reactive oxygen species(ROS)and both mitochondria-dependent and death receptor-mediated multiple signaling pathways[J]. J Agric Food Chem, 2012, 60(2):665-675. doi:10.1021/jf204193v. |
[20] | TANG W, CHEN Z, ZHANG W, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma:theoretical basis and therapeutic aspects[J]. Signal Transduct Target Ther, 2020, 5(1):87. doi:10.1038/s41392-020-0187-x. |
[21] | 严丽, 冀宏. 索拉非尼对甲状腺未分化癌细胞增殖、迁移及侵袭能力的影响[J]. 中国医院药学杂志, 2014, 34(19):1631-1634. |
YAN L, JI H. Effect of sorafenib on proliferation, migration and invasion of anaplastic thyroid carcinoma cells[J]. Chinese Journal of Hospital Pharmacy, 2014, 34(19):1631-1634. doi:10.13286/j.cnki.chinhosppharmacyj.2014.19.04. | |
[22] | 熊建哲, 张昊, 余伟. 索拉非尼抑制口腔鳞状细胞癌细胞的自噬、增殖及迁移[J]. 口腔颌面外科杂志, 2024, 34(4):276-281. |
XIONG J Z, ZHANG H, YU W. Sorafenib tosylate inhibits autophagy,proliferation and migration of oral squamous cell carcinoma[J]. Journal of Oral and Maxillofacial Surgery, 2024, 34(4):276-281. doi:10.12439/kqhm.1005-4979.2024.04.004. | |
[23] | WANG C, ZENG J, LI L J, et al. Cdc25A inhibits autophagy-mediated ferroptosis by upregulating ErbB2 through PKM2 dephosphorylation in cervical cancer cells[J]. Cell Death Dis, 2021, 12(11):1055. doi:10.1038/s41419-021-04342-y. |
[24] | JIN Y, HUANG R, XIA Y, et al. Long noncoding RNA KIF9-AS1 regulates transforming growth factor-β and autophagy signaling to enhance renal cell carcinoma chemoresistance via microRNA-497-5p[J]. DNA Cell Biol, 2020, 39(7):1096-1103. doi:10.1089/dna.2020.5453. |
[25] | BOOTH L, ROBERTS J L, POKLEPOVIC A, et al. Prior exposure of pancreatic tumors to [sorafenib+ vorinostat] enhances the efficacy of an anti-PD-1 antibody[J]. Cancer Biol Ther, 2019, 20(1):109-121. doi:10.1080/15384047.2018.1507258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||