Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (2): 155-159.doi: 10.11958/20220420
• Experimental Research • Previous Articles Next Articles
ZHANG Xue(), WANG Jiarui, CHEN Kangyin△(
)
Received:
2022-03-20
Revised:
2022-08-01
Published:
2023-02-15
Online:
2023-02-24
Contact:
△E-mail:ZHANG Xue, WANG Jiarui, CHEN Kangyin. Effects of glycyrrhizin on myocardial HMGB1/TLR4/NF-κB/HIF-1α signaling pathway in chronic kidney disease rats[J]. Tianjin Medical Journal, 2023, 51(2): 155-159.
CLC Number:
组别 | 肌酐 (μmol/L) | 尿酸 (μmol/L) | 尿素氮 (mmol/L) | 血清镁 (mmol/L) | |||
---|---|---|---|---|---|---|---|
Sham组 | 20.16±9.62 | 16.43±5.65 | 6.15±0.53 | 0.75±0.06 | |||
Sham+Gly组 | 25.35±5.39 | 24.15±16.07 | 6.45±0.59 | 0.87±0.18a | |||
CKD组 | 47.53±9.22ab | 59.84±12.49ab | 12.87±1.92ab | 1.11±0.10ab | |||
CKD+Gly组 | 44.32±9.23ab | 54.08±21.96ab | 13.21±3.13ab | 1.12±0.13ab | |||
F | 22.514** | 16.478** | 33.016** | 19.717** | |||
组别 | 心脏质量(g) | 体质量(g) | 心脏体质量比(%) | ||||
Sham组 | 1.13±0.17 | 351.75±28.50 | 0.32±0.03 | ||||
Sham+Gly组 | 1.27±0.15 | 389.50±38.51 | 0.33±0.01 | ||||
CKD组 | 1.21±0.09 | 348.75±18.72 | 0.35±0.02 | ||||
CKD+Gly组 | 1.29±0.19 | 332.67±46.31 | 0.39±0.04ab | ||||
F | 1.005 | 1.973 | 5.266* |
Tab.1 4组大鼠的生化指标及基本特征比较 (n=4,$\bar{x}±s$)
组别 | 肌酐 (μmol/L) | 尿酸 (μmol/L) | 尿素氮 (mmol/L) | 血清镁 (mmol/L) | |||
---|---|---|---|---|---|---|---|
Sham组 | 20.16±9.62 | 16.43±5.65 | 6.15±0.53 | 0.75±0.06 | |||
Sham+Gly组 | 25.35±5.39 | 24.15±16.07 | 6.45±0.59 | 0.87±0.18a | |||
CKD组 | 47.53±9.22ab | 59.84±12.49ab | 12.87±1.92ab | 1.11±0.10ab | |||
CKD+Gly组 | 44.32±9.23ab | 54.08±21.96ab | 13.21±3.13ab | 1.12±0.13ab | |||
F | 22.514** | 16.478** | 33.016** | 19.717** | |||
组别 | 心脏质量(g) | 体质量(g) | 心脏体质量比(%) | ||||
Sham组 | 1.13±0.17 | 351.75±28.50 | 0.32±0.03 | ||||
Sham+Gly组 | 1.27±0.15 | 389.50±38.51 | 0.33±0.01 | ||||
CKD组 | 1.21±0.09 | 348.75±18.72 | 0.35±0.02 | ||||
CKD+Gly组 | 1.29±0.19 | 332.67±46.31 | 0.39±0.04ab | ||||
F | 1.005 | 1.973 | 5.266* |
组别 | 心率 (次/min) | 收缩压 (mmHg) | 平均动脉压 (mmHg) | 舒张压 (mmHg) |
---|---|---|---|---|
Sham组 | 406.84±25.63 | 129.03±9.92 | 109.65±7.83 | 99.80±7.98 |
Sham+Gly组 | 401.78±32.92 | 138.95±19.00 | 114.63±17.54 | 102.07±17.75 |
CKD组 | 421.09±42.17 | 154.30±13.68ab | 125.59±12.80a | 111.10±13.12 |
CKD+Gly组 | 408.59±36.40 | 149.86±15.80a | 124.47±14.49a | 111.31±15.16 |
F | 0.497 | 5.137** | 2.905* | 1.684 |
Tab.2 4组大鼠心率和血压比较 (n=4,$\bar{x}±s$)
组别 | 心率 (次/min) | 收缩压 (mmHg) | 平均动脉压 (mmHg) | 舒张压 (mmHg) |
---|---|---|---|---|
Sham组 | 406.84±25.63 | 129.03±9.92 | 109.65±7.83 | 99.80±7.98 |
Sham+Gly组 | 401.78±32.92 | 138.95±19.00 | 114.63±17.54 | 102.07±17.75 |
CKD组 | 421.09±42.17 | 154.30±13.68ab | 125.59±12.80a | 111.10±13.12 |
CKD+Gly组 | 408.59±36.40 | 149.86±15.80a | 124.47±14.49a | 111.31±15.16 |
F | 0.497 | 5.137** | 2.905* | 1.684 |
组别 | 舒张期室间 隔厚度(mm) | 收缩期室间 隔厚度(mm) | 舒张期左心 室内径(mm) | 收缩期左心 室内径(mm) | 舒张期左心室 后壁厚度(mm) | 收缩期左心室 后壁厚度(mm) | 左心室 射血分数 | E/A | 肺动脉血流 加速时间(ms) |
---|---|---|---|---|---|---|---|---|---|
Sham组 | 1.83±0.28 | 2.94±0.36 | 6.54±0.63 | 3.26±0.81 | 2.01±0.28 | 3.52±0.57 | 0.81±0.07 | 1.34±0.28 | 25.32±2.00 |
Sham+Gly组 | 2.06±0.24 | 3.21±0.47 | 6.76±0.30 | 3.86±0.47 | 2.10±0.25 | 3.54±0.47 | 0.76±0.07a | 1.19±0.05 | 25.38±4.67 |
CKD组 | 2.08±0.23a | 2.93±0.31 | 6.65±0.58 | 4.37±1.06a | 2.32±0.48 | 3.54±0.51 | 0.62±0.11ab | 0.84±0.11ab | 34.43±5.98ab |
CKD+Gly组 | 2.21±0.17a | 3.49±0.44ac | 6.50±0.65 | 3.85±0.67 | 2.37±0.43 | 3.61±0.34 | 0.70±0.08ac | 1.14±0.20c | 31.66±5.62ab |
F | 4.653** | 4.693** | 0.401 | 2.931* | 1.839 | 0.075 | 8.093** | 11.010** | 7.635** |
Tab.3 4组大鼠心脏超声指标比较 (n=4,$\bar{x}±s$)
组别 | 舒张期室间 隔厚度(mm) | 收缩期室间 隔厚度(mm) | 舒张期左心 室内径(mm) | 收缩期左心 室内径(mm) | 舒张期左心室 后壁厚度(mm) | 收缩期左心室 后壁厚度(mm) | 左心室 射血分数 | E/A | 肺动脉血流 加速时间(ms) |
---|---|---|---|---|---|---|---|---|---|
Sham组 | 1.83±0.28 | 2.94±0.36 | 6.54±0.63 | 3.26±0.81 | 2.01±0.28 | 3.52±0.57 | 0.81±0.07 | 1.34±0.28 | 25.32±2.00 |
Sham+Gly组 | 2.06±0.24 | 3.21±0.47 | 6.76±0.30 | 3.86±0.47 | 2.10±0.25 | 3.54±0.47 | 0.76±0.07a | 1.19±0.05 | 25.38±4.67 |
CKD组 | 2.08±0.23a | 2.93±0.31 | 6.65±0.58 | 4.37±1.06a | 2.32±0.48 | 3.54±0.51 | 0.62±0.11ab | 0.84±0.11ab | 34.43±5.98ab |
CKD+Gly组 | 2.21±0.17a | 3.49±0.44ac | 6.50±0.65 | 3.85±0.67 | 2.37±0.43 | 3.61±0.34 | 0.70±0.08ac | 1.14±0.20c | 31.66±5.62ab |
F | 4.653** | 4.693** | 0.401 | 2.931* | 1.839 | 0.075 | 8.093** | 11.010** | 7.635** |
组别 | HMGB1 | TLR4 | NF-κB | HIF-1α |
---|---|---|---|---|
Sham组 | 0.93±0.12 | 1.03±0.07 | 0.97±0.06 | 1.03±0.07 |
Sham+Gly组 | 1.12±0.17 | 1.08±0.10 | 1.01±0.21 | 1.13±0.12 |
CKD组 | 2.38±0.31ab | 1.14±0.13 | 3.54±0.24ab | 2.30±0.17ab |
CKD+Gly组 | 1.93±0.59abc | 1.03±0.09 | 1.57±0.22abc | 1.82±0.16abc |
F | 40.287** | 0.799 | 111.536** | 57.732** |
Tab.5 4组大鼠心肌组织中HMGB1/TLR4/NF-κB/HIF-1α信号通路相关蛋白表达水平比较 (n=4,$\bar{x}±s$)
组别 | HMGB1 | TLR4 | NF-κB | HIF-1α |
---|---|---|---|---|
Sham组 | 0.93±0.12 | 1.03±0.07 | 0.97±0.06 | 1.03±0.07 |
Sham+Gly组 | 1.12±0.17 | 1.08±0.10 | 1.01±0.21 | 1.13±0.12 |
CKD组 | 2.38±0.31ab | 1.14±0.13 | 3.54±0.24ab | 2.30±0.17ab |
CKD+Gly组 | 1.93±0.59abc | 1.03±0.09 | 1.57±0.22abc | 1.82±0.16abc |
F | 40.287** | 0.799 | 111.536** | 57.732** |
[1] | WANG X, SHAPIRO J I. Evolving concepts in the pathogenesis of uraemic cardiomyopathy[J]. Nat Rev Nephrol, 2019, 15(3):159-175. doi:10.1038/s41581-018-0101-8. |
[2] | KAESLER N, BABLER A, FLOEGE J, et al. Cardiac remodeling in chronic kidney disease[J]. Toxins (Basel), 2020, 12(3):161. doi:10.3390/toxins12030161. |
[3] | RANGASWAMI J, BHALLA V, BLAIR J, et al. Cardiorenal syndrome:classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association[J]. Circulation, 2019, 139(16):e840-e878. doi:10.1161/CIR.0000000000000664. |
[4] | XUE J, SUAREZ J S, MINAAI M, et al. HMGB1 as a therapeutic target in disease[J]. J Cell Physiol, 2021, 236(5):3406-3419. doi:10.1002/jcp.30125. |
[5] | MA X, ZHANG W, JIANG Y, et al. Paeoniflorin,a natural product with multiple targets in liver diseases-a mini review[J]. Front Pharmacol, 2020, 11:531. doi:10.3389/fphar.2020.00531. |
[6] | SUNG I S, PARK S Y, JEONG K Y, et al. Investigation of the preventive effect of calcium on inflammation-mediated choroidal neovascularization[J]. Life Sci, 2019, 233:116727. doi:10.1016/j.lfs.2019.116727. |
[7] | GAO R, ZHANG Y, KANG Y, et al. Glycyrrhizin inhibits PEDV infection and proinflammatory cytokine secretion via the HMGB1/TLR4-MAPK p38 Pathway[J]. Int J Mol Sci, 2020, 21(8):2961. doi:10.3390/ijms21082961. |
[8] | ZHANG L, WANG F, WANG L, et al. Prevalence of chronic kidney disease in China:A cross-sectional survey[J]. Lancet, 2012, 379(9818):815-822. doi:10.1016/S0140-6736(12)60033-6. |
[9] | SARNAK M J, AMANN K, BANGALORE S, et al. Chronic kidney disease and coronary artery disease:JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 74(14):1823-1838. doi:10.1016/j.jacc.2019.08.1017. |
[10] | YUAN J, ZOU X R, HAN S P, et al. Prevalence and risk factors for cardiovascular disease among chronic kidney disease patients: results from the Chinese cohort study of chronic kidney disease(C-STRIDE)[J]. BMC Nephrol, 2017, 18(1):23. doi:10.1186/s12882-017-0441-9. |
[11] | JIN X, RONG S, YUAN W, et al. High Mobility Group Box 1 promotes aortic calcification in chronic kidney disease via the Wnt/β-Catenin pathway[J]. Front Physiol, 2018, 9:665. doi:10.3389/fphys.2018.00665. |
[12] | RAUCCI A, DI MAGGIO S, SCAVELLO F, et al. The Janus face of HMGB1 in heart disease: a necessary update[J]. Cell Mol Life Sci, 2019, 76(2):211-229. doi:10.1007/s00018-018-2930-9. |
[13] | 谢美丽, 王越晖, 王智昊. 高迁移率族蛋白1与心血管疾病研究进展[J]. 国际老年医学杂志, 2021, 42(6):381-385. |
XIE M L, WANG Y H, WANG Z H. Advances in the Relationship between HMGB1 and Cardiovascular Diseases[J]. International Journal of Geriatrics, 2021, 42(6):381-385. doi:10.3969/j.issn.1674-7593.2021.06.015. | |
[14] | 陈川斌, 黄锋. 高迁移率族蛋白1在心肌缺血再灌注损伤中作用的研究进展[J]. 天津医药, 2020, 48(11):1125-1130. |
CHEN C B, HUANG F. Research progress on the role of high mobility group box-1 in myocardial ischemia reperfusion injury[J]. Tianjin Med J, 2020, 48(11):1125-1130. doi:10.11958/20201796. | |
[15] | JIANG J, CHEN Q, CHEN X, et al. Magnesium sulfate ameliorates sepsis-induced diaphragm dysfunction in rats via inhibiting HMGB1/TLR4/NF-κB pathway[J]. Neuroreport, 2020, 31(12):902-908. doi:10.1097/WNR.0000000000001478. |
[16] | HE M, BIANCHI M E, COLEMAN T R, et al. Exploring the biological functional mechanism of the HMGB1/TLR4/MD-2 complex by surface plasmon resonance[J]. Mol Med, 2018, 24(1):21. doi:10.1186/s10020-018-0023-8. |
[17] | YANG H, WANG H, JU Z, et al. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling[J]. J Exp Med, 2015, 212(1):5-14. doi:10.1084/jem.20141318. |
[18] | XIONG X, GU L, WANG Y, et al. Glycyrrhizin protects against focal cerebral ischemia via inhibition of T cell activity and HMGB1-mediated mechanisms[J]. J Neuroinflammation, 2016, 13(1):241. doi:10.1186/s12974-016-0705-5. |
[19] | PAUDEL Y N, ANGELOPOULOU E, SEMPLE B, et al. Potential neuroprotective effect of the HMGB1 nnhibitor glycyrrhizin in neurological disorders[J]. ACS Chem Neurosci, 2020, 11(4):485-500. doi:10.1021/acschemneuro.9b00640. |
[20] | CHEN H, GUAN B, WANG B, et al. Glycyrrhizin prevents hemorrhagic transformation and improves neurological outcome in ischemic stroke with delayed thrombolysis through targeting peroxynitrite-mediated HMGB1 signaling[J]. Transl Stroke Res, 2020, 11(5):967-982. doi:10.1007/s12975-019-00772-1. |
[21] | ZHAI C L, ZHANG M Q, ZHANG Y, et al. Glycyrrhizin protects rat heart against ischemia-reperfusion injury through blockade of HMGB1-dependent phospho-JNK/Bax pathway[J]. Acta Pharmacol Sin, 2012, 33(12):1477-1487. doi:10.1038/aps.2012.112. |
[22] | DU D, YAN J, REN J, et al. Synthesis, biological evaluation, and molecular modeling of glycyrrhizin derivatives as potent high-mobility group box-1 inhibitors with anti-heart-failure activity in vivo[J]. J Med Chem, 2013, 56(1):97-108. doi:10.1021/jm301248y. |
[1] | WANG Xinshuang, AN Yajuan, GUAN Xiuju, LI Jiao, LIU Yue, WEI Liping, QI Xin. Study of magnesium isoglycyrrhizinate in ameliorating cisplatin induced myocardial injury in rats [J]. Tianjin Medical Journal, 2024, 52(8): 809-814. |
[2] | ZHENG Yue, MA Yunting, ZHAO Xiaoying, ZHAO Xinxiang. Correlation between homocysteine and left ventricular myocardial fibrosis in hypertensive patients [J]. Tianjin Medical Journal, 2023, 51(4): 395-399. |
[3] | XING Jianong, LIANG Zhuo, XING Aijun, LIU Junlan, PENG Hongchao, ZHANG Tianhua, ZHANG Chunlai. Effects of lncRNA MIAT on ventricular remodeling and myocardial fibrosis in rats with atrial fibrillation through targeting regulation of miR-128-3p [J]. Tianjin Medical Journal, 2022, 50(9): 932-937. |
[4] | HUANG Pengfei, LU Chengzhi. Efficacy and safety of low-dose sacubitril/valsartan in patients with heart failure and stage 1-3 chronic kidney disease [J]. Tianjin Medical Journal, 2022, 50(9): 993-997. |
[5] | FU Weiwei, CHEN Jie, WU Qiongwei, LUO Jiangbin, LI Zhouyang, LONG Zuopeng. Serum levels of VK2 and Runx2 and their relationship with cardiovascular calcification in patients with stage Ⅲ-Ⅴ non dialysis chronic kidney disease [J]. Tianjin Medical Journal, 2022, 50(5): 513-517. |
[6] | ZHAI Yajun, YANG Han, CHEN Wanli, LIU Yue, WEI Liping, LIU Keqiang, QI Xin△. Study on the effects of allisartan isoproxil on stabilizing antihypertension and myocardial protection in spontaneous hypertensive rats [J]. Tianjin Medical Journal, 2022, 50(5): 481-486. |
[7] | HUO Ning, ZHAN Xiaoping, ZHOU Mengzhu, ZHANG Yue, LIANG Xue, LI Guangping, LIU Changle. Effects of glyburide on atrial remodeling and atrial fibrillation induction in diabetic rats [J]. Tianjin Medical Journal, 2022, 50(3): 253-258. |
[8] | LIU Da, XIAO Ting, LIANG Biao, SONG Xiong, WANG Sen, ZHAO Junxiong, YANG Jun. Exogenous H2S delays premature myocardial aging and inhibits myocardial fibrosis in uremic rats by upregulating SIRT1 [J]. Tianjin Medical Journal, 2022, 50(12): 1276-1281. |
[9] | CHEN De-zhu, ZENG Fan-kun, ZHONG Jian, ZHANG Li. Analysis of risk factors of sepsis-induced acute kidney injury progressing to chronic kidney disease #br# [J]. Tianjin Medical Journal, 2021, 49(2): 165-168. |
[10] | WANG Yong-yan, LIN Hong-li, LI Yu-geng, YU Jing, WEI Ling-bo, ZHU Dong-dong . Study on the correlation between serum Periostin level and left ventricular hypertrophy in patients with chronic kidney disease [J]. Tianjin Medical Journal, 2021, 49(10): 1098-1102. |
[11] | MAO Nan, LIN Ding-biao, MA Xin, CHEN Hong-xi, ZHOU Wan-qiu, WANG Shao-qing. The role of high mobility group protein 1 in aldosterone-induced autophagy of renal tubular epithelial cells #br# [J]. Tianjin Medical Journal, 2020, 48(4): 248-252. |
[12] | WU Xiao-hui, YOU Hai-yan, HU Rong, LIU Ling-yu, WANG Ming-qing, WEI Lian-bo. The effect of Shenshuai Nutrition Capsule on bone metabolism and expression of BMP-2 in rats with renal osteodystrophy [J]. Tianjin Medical Journal, 2020, 48(2): 91-95. |
[13] | YUAN Guo-qiang, QIN Yong-sheng, PENG Peng. The effect and mechanism of aerobic training on cardiac fibrosis in spontaneously hypertensive rats [J]. Tianjin Medical Journal, 2020, 48(2): 100-104. |
[14] | GONG Shu-hao, LU Wan-jun, OUYANG Liu-rong, WANG Ying△. The efficacy of febuxostat in the treatment of chronic kidney disease with hyperuricemia and its influence in renal function: a Meta-analysis [J]. Tianjin Med J, 2018, 46(10): 1102-1107. |
[15] | NIE Dan, SUN Hongdan, SHI Zhaoping, et al.. The effects of compound of paeonol and PNS on expressions of collagen Ⅰand Ⅲ protein and mRNA in rat model of acute myocardial infarction [J]. Tianjin Med J, 2016, 44(8): 955-958. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||