Tianjin Medical Journal ›› 2022, Vol. 50 ›› Issue (9): 932-937.doi: 10.11958/20220015
• Experimental Research • Previous Articles Next Articles
XING Jianong1(), LIANG Zhuo2, XING Aijun3, LIU Junlan1, PENG Hongchao1, ZHANG Tianhua1, ZHANG Chunlai1
Received:
2022-01-04
Revised:
2022-03-08
Published:
2022-09-15
Online:
2022-09-05
XING Jianong, LIANG Zhuo, XING Aijun, LIU Junlan, PENG Hongchao, ZHANG Tianhua, ZHANG Chunlai. Effects of lncRNA MIAT on ventricular remodeling and myocardial fibrosis in rats with atrial fibrillation through targeting regulation of miR-128-3p[J]. Tianjin Medical Journal, 2022, 50(9): 932-937.
CLC Number:
引物名称 | 引物序列(5'→3') | 产物大小(bp) |
---|---|---|
miR-128-3p | 上游:AGGCTCACAGTGAACCGGTC 下游:CGCAGGGTCCGAGGTATTC | 145 |
U6 | 上游:CGCTTCGGCAGCACATATAC 下游:AAATATGGAACGCTTCACGA | 132 |
Tab.1 qPCR primer sequence
引物名称 | 引物序列(5'→3') | 产物大小(bp) |
---|---|---|
miR-128-3p | 上游:AGGCTCACAGTGAACCGGTC 下游:CGCAGGGTCCGAGGTATTC | 145 |
U6 | 上游:CGCTTCGGCAGCACATATAC 下游:AAATATGGAACGCTTCACGA | 132 |
组别 | ERP (ms) | APD90 (ms) | 左心室质量 指数(mg/g) | 心肌CVF (%) |
---|---|---|---|---|
对照组 | 46.01±3.02 | 65.13±4.81 | 12.20±2.01 | 0.52±0.17 |
模型组 | 20.15±2.58a | 48.94±3.97a | 21.05±3.48a | 20.53±2.04a |
MIAT组 | 43.57±3.64b | 62.87±4.56b | 13.97±2.46b | 3.74±1.23b |
miR-128-3p组 | 12.63±0.82b | 37.58±2.01b | 29.03±2.85b | 31.67±3.52b |
MIAT+miR- 128-3p组 | 22.08±2.16cd | 51.89±2.68cd | 20.01±2.62cd | 18.91±2.19cd |
空载质粒组 | 19.78±2.27 | 49.72±4.05 | 21.67±2.34 | 21.06±2.23 |
F | 351.599** | 84.145** | 61.401** | 356.630** |
Tab.2 Comparison of atrial electrophysiological indexes, left ventricular mass index and myocardial CVF between the six groups of rats
组别 | ERP (ms) | APD90 (ms) | 左心室质量 指数(mg/g) | 心肌CVF (%) |
---|---|---|---|---|
对照组 | 46.01±3.02 | 65.13±4.81 | 12.20±2.01 | 0.52±0.17 |
模型组 | 20.15±2.58a | 48.94±3.97a | 21.05±3.48a | 20.53±2.04a |
MIAT组 | 43.57±3.64b | 62.87±4.56b | 13.97±2.46b | 3.74±1.23b |
miR-128-3p组 | 12.63±0.82b | 37.58±2.01b | 29.03±2.85b | 31.67±3.52b |
MIAT+miR- 128-3p组 | 22.08±2.16cd | 51.89±2.68cd | 20.01±2.62cd | 18.91±2.19cd |
空载质粒组 | 19.78±2.27 | 49.72±4.05 | 21.67±2.34 | 21.06±2.23 |
F | 351.599** | 84.145** | 61.401** | 356.630** |
组别 | IL-18 (µg/L) | IL-6 (µg/L) | TGF-β1 (ng/L) | miR-128-3p |
---|---|---|---|---|
对照组 | 0.39±0.04 | 1.32±0.24 | 120.68±26.83 | 1.01±0.24 |
模型组 | 1.42±0.13a | 14.29±2.65a | 638.15±65.38a | 0.56±0.07a |
MIAT组 | 0.43±0.09b | 1.97±0.43b | 125.49±28.16b | 0.96±0.19b |
miR-128-3p组 | 2.38±0.22b | 25.32±3.17b | 931.27±86.67b | 0.31±0.05b |
MIAT+miR- 128-3p组 | 1.39±0.18cd | 13.14±3.01cd | 629.82±70.54cd | 0.59±0.08cd |
空载质粒组 | 1.44±0.26 | 14.75±2.82 | 635.91±72.08 | 0.55±0.06 |
F | 228.185** | 170.296** | 321.152** | 46.911** |
Tab.3 Comparison of serum levels of IL-18, IL-6, TGF-β1 and expression of miR-128-3p in myocardial tissue between the six groups of rats
组别 | IL-18 (µg/L) | IL-6 (µg/L) | TGF-β1 (ng/L) | miR-128-3p |
---|---|---|---|---|
对照组 | 0.39±0.04 | 1.32±0.24 | 120.68±26.83 | 1.01±0.24 |
模型组 | 1.42±0.13a | 14.29±2.65a | 638.15±65.38a | 0.56±0.07a |
MIAT组 | 0.43±0.09b | 1.97±0.43b | 125.49±28.16b | 0.96±0.19b |
miR-128-3p组 | 2.38±0.22b | 25.32±3.17b | 931.27±86.67b | 0.31±0.05b |
MIAT+miR- 128-3p组 | 1.39±0.18cd | 13.14±3.01cd | 629.82±70.54cd | 0.59±0.08cd |
空载质粒组 | 1.44±0.26 | 14.75±2.82 | 635.91±72.08 | 0.55±0.06 |
F | 228.185** | 170.296** | 321.152** | 46.911** |
[1] | SEPEHRI SHAMLOO A, DAGRES N, HINDRICKS G. 2020 ESC guidelines on atrial fibrillation:Summary of the most relevant recommendations and innovations[J]. Herz, 2021, 46(1):28-37. doi: 10.1007/s00059-020-05005-y. |
[2] | NADEMANEE K. Atrial fibrillation ablation in the 21st century:Almost no stroke risk?[J]. Heart Rhythm, 2020, 17(12):2100-2101. doi: 10.1016/j.hrthm.2020.08.008. |
[3] | SHARMA G, GHATI N, SHARIQUE M, et al. Role of inflammation in initiation and maintenance of atrial fibrillation in rheumatic mitral stenosis-An analytical cross-sectional study[J]. J Arrhythm, 2020, 36(6):1007-1015. doi: 10.1002/joa3.12428. |
[4] | XIAO L, SALEM J E, CLAUSS S, et al. Ibrutinib-mediated atrial fibrillation attributable to inhibition of C-terminal Src kinase[J]. Circulation, 2020, 142(25):2443-2455. doi: 10.1161/CIRCULATION AHA.120.049210. |
[5] | FARSANGI S J, ROSTAMZADEH F, SHEIKHOLESLAMI M, et al. Modulation of the expression of long non-coding RNAs H19,GAS5,and MIAT by endurance exercise in the hearts of rats with myocardial infarction[J]. Cardiovasc Toxicol, 2021, 21(2):162-168. doi: 10.1007/s12012-020-09607-0. |
[6] | YANG L, DENG J, MA W, et al. Ablation of lncRNA Miat attenuates pathological hypertrophy and heart failure[J]. Theranostics, 2021, 11(16):7995-8007. doi: 10.7150/thno.50990. |
[7] | YAO L, ZHOU B, YOU L, et al. LncRNA MIAT/miR-133a-3p axis regulates atrial fibrillation and atrial fibrillation-induced myocardial fibrosis[J]. Mol Biol Rep, 2020, 47(4):2605-2617. doi: 10.1007/s11033-020-05347-0. |
[8] | LI F, LI H, LI S, et al. Long non-coding RNA MIAT mediates non-small cell lung cancer development through regulating the miR-128-3p/PELI3 axis[J]. Biochem Genet, 2020, 58(6):867-882. doi: 10.1007/s10528-020-09979-6. |
[9] | YANG P, HAN J, LI S, et al. miR-128-3p inhibits apoptosis and inflammation in LPS-induced sepsis by targeting TGFBR2[J]. Open Med (Wars), 2021, 16(1):274-283. doi: 10.1515/med-2021-0222. |
[10] | CAO F, LI Z, DING W M, et al. LncRNA PVT1 regulates atrial fibrosis via miR-128-3p-SP1-TGF-β1-Smad axis in atrial fibrillation[J]. Mol Med, 2019, 25(1):7-17. doi: 10.1186/s10020-019-0074-5. |
[11] | 焦华琛, 郑书敏, 李运伦, 等. 心AF动大鼠心房肌HCN2,HCN4表达及青山健心片的干预作用[J]. 中西医结合心脑血管病杂志, 2020, 18(14):2230-2233. |
JIAO H C, ZHENG S M, LI Y L, et al. The expression of HCN2,HCN4 in atrial fibrillation rats and the intervention effect of Qingshan Jianxin Tablet[J]. Chinese Journal of Integrative Medicine on Cardio/Cerebrovascular Disease, 2020, 18(14):2230-2233. doi: 10.12102/j.issn.1672-1349.2020.14.008. | |
[12] | SEARS S F, ANTHONY S, NANIWADEKAR A, et al. Modern atrial fibrillation care:Becoming a pro at using PROs[J]. J Cardiovasc Electrophysiol, 2020, 31(12):3196-3198. doi: 10.1111/jce.14793. |
[13] | WANG Q C, WANG Z Y. Big data and atrial fibrillation:current understanding and new opportunities[J]. J Cardiovasc Transl Res, 2020, 13(6):944-952. doi: 10.1007/s12265-020-10008-5. |
[14] | NSO N, BOOKANI K R, METZL M, et al. Role of inflammation in atrial fibrillation:A comprehensive review of current knowledge[J]. J Arrhythm, 2020, 37(1):1-10. doi: 10.1002/joa3.12473. |
[15] | HARADA M, NATTEL S. Implications of inflammation and fibrosis in atrial fibrillation pathophysiology[J]. Card Electrophysiol Clin, 2021, 13(1):25-35. doi: 10.1016/j.ccep.2020.11.002. |
[16] | ZHAO X, REN Y, REN H, et al. The mechanism of myocardial fibrosis is ameliorated by myocardial infarction-associated transcript through the PI3K/Akt signaling pathway to relieve heart failure[J]. J Int Med Res, 2021, 49(7):3000605211031433-3000605211031443. doi: 10.1177/03000605211031433. |
[17] | CHEN Y, CHEN X, LI H, et al. Serum extracellular vesicles containing MIAT induces atrial fibrosis,inflammation and oxidative stress to promote atrial remodeling and atrial fibrillation via blockade of miR-485-5p-mediated CXCL10 inhibition[J]. Clin Transl Med, 2021, 11(8):e482-e500. doi: 10.1002/ctm2.482. |
[18] | LIU J, WANG S, ZHANG Q, et al. Selenomethionine alleviates LPS-induced chicken myocardial inflammation by regulating the miR-128-3p-p38 MAPK axis and oxidative stress[J]. Metallomics, 2020, 12(1):54-64. doi: 10.1039/c9mt00216b. |
[19] | MA H, CHEN P, SANG C, et al. Modulation of apoptosis-related microRNAs following myocardial infarction in fat-1 transgenic mice vs wild-type mice[J]. J Cell Mol Med, 2018, 22(11):5698-5707. doi: 10.1111/jcmm.13846. |
[20] | ZHANG C, XIE L, LIANG H, et al. LncRNA MIAT facilitates osteosarcoma progression by regulating mir-128-3p/VEGFC axis[J]. IUBMB Life, 2019, 71(7):845-853. doi: 10.1002/iub.2001. |
[1] | GAO Pan, XIE Bingxin, ZHOU Zandong, LIU Tong. Promoting effect of circulating FGF23 on atrial fibrosis in chronic kidney disease [J]. Tianjin Medical Journal, 2024, 52(9): 917-923. |
[2] | ZHANG Minglong, FANG Yuanyuan, SUI Xiaopeng, CHEN Xinxin, LI Liudong, WANG Haitao. Relationship between left ventricular hypertrophy diagnosed by Peguero-Lo-Presti index and recurrence after radiofrequency catheter ablation of paroxysmal atrial fibrillation [J]. Tianjin Medical Journal, 2024, 52(2): 210-214. |
[3] | LI Shaoru, LI Yan, LIU Shan, HU Ruili. Influences of lncRNA SNHG11 on proliferation, apoptosis, migration and invasion of ovarian cancer cells by regulating miR-184/CARM1 signaling axis [J]. Tianjin Medical Journal, 2023, 51(6): 561-567. |
[4] | ZHOU Mengzhu, ZHANG Haifeng, ZHANG Xue, ZHANG Yue, CHENG Lijun, LIU Tong, LIU Changle. Effect of NLRP3-CAMKⅡ-IRE-1α pathway induced oxidative stress on ventricular remodeling in diabetic rats [J]. Tianjin Medical Journal, 2023, 51(6): 580-585. |
[5] | NING Yinkuan, LIU Linzhi, CHEN Xianping. Experimental study on the mineralization of rabbit bone marrow mesenchymal stem cells after transfection with BMP2 recombinant lentivirus [J]. Tianjin Medical Journal, 2023, 51(5): 454-459. |
[6] | ZHENG Yue, MA Yunting, ZHAO Xiaoying, ZHAO Xinxiang. Correlation between homocysteine and left ventricular myocardial fibrosis in hypertensive patients [J]. Tianjin Medical Journal, 2023, 51(4): 395-399. |
[7] | YANG Guohong, YU Fangfang, CAI Wei, NIU Xiulong, ZHANG Xin, ZHAO Jihong, LI Yuming, CHEN Shaobo. Effects of peripheral blood VEGFR-3+ monocytes on left ventricular remodeling in mice with hypertension [J]. Tianjin Medical Journal, 2023, 51(2): 144-148. |
[8] | PENG Ming, LI Yukai, WANG Lan, HUANG Liang, CHENG Zhong, XIAO Jie. Effects of autonomic nervous regulation on myocardial structural remodeling, electrical remodeling and fibrosis in rats with ejection fraction preserved heart failure based on calcium overload [J]. Tianjin Medical Journal, 2023, 51(1): 30-34. |
[9] | HUO Liwei, LIU Jun, ZHENG Binbin, BI Xuena. Predictive value of serum FGF-23 in recurrence of patients with atrial fibrillation after radiofrequency ablation [J]. Tianjin Medical Journal, 2023, 51(1): 74-77. |
[10] | HE Hongmei, SUN Jian, WANG Huanhuan, MA Shujing, ZHANG Haiyan, ZOU Yu'an, XUE Qian, SONG Aixia. Risk factors for vascular dementia in patients with nonvalvular atrial fibrillation: a case-control study [J]. Tianjin Medical Journal, 2022, 50(8): 840-843. |
[11] | ZHANG Xuteng, LIU Fang, CHEN Jun, LIU Xiaomeng, JIN Le, GAO Hongmei△. Research progress of PI3K/AKT signaling pathway in atrial fibrillation [J]. Tianjin Medical Journal, 2022, 50(5): 556-560. |
[12] | ZHAI Yajun, YANG Han, CHEN Wanli, LIU Yue, WEI Liping, LIU Keqiang, QI Xin△. Study on the effects of allisartan isoproxil on stabilizing antihypertension and myocardial protection in spontaneous hypertensive rats [J]. Tianjin Medical Journal, 2022, 50(5): 481-486. |
[13] | HUO Ning, ZHAN Xiaoping, ZHOU Mengzhu, ZHANG Yue, LIANG Xue, LI Guangping, LIU Changle. Effects of glyburide on atrial remodeling and atrial fibrillation induction in diabetic rats [J]. Tianjin Medical Journal, 2022, 50(3): 253-258. |
[14] | LU Jie, ZHANG Xin, WANG Tao, YANG Ning. Effects of circRNAs on atrial fibrillation and its mechanism [J]. Tianjin Medical Journal, 2022, 50(3): 333-336. |
[15] | LI Rui-ling, ZHAO Zhi-qiang△. Research progress of relaxin in atrial fibrillation [J]. Tianjin Medical Journal, 2021, 49(4): 441-444. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||