[1] |
KOZLOWSKI M T, CROOK C J, KU H T. Towards organoid culture without Matrigel[J]. Commun Biol, 2021, 4(1):1387. doi:10.1038/s42003-021-02910-8.
|
[2] |
ZHOU Z, CONG L, CONG X, et al. Patient-derived organoids in precision medicine:drug screening,organoid-on-a-chip and living organoid biobank[J]. Front Oncol, 2021, 11:762184. doi:10.3389/fonc.2021.762184.
|
[3] |
GARRETA E, KAMM R D, CHUVA DE SOUSA LOPES S M, et al. Rethinking organoid technology through bioengineering[J]. Nat Mater, 2021, 20(2):145-155. doi:10.1038/s41563-020-00804-4.
|
[4] |
SATO T, STANGE D E, FERRANTE M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium[J]. Gastroenterology, 2011, 141(5):1762-1772. doi:10.1053/j.gastro.2011.07.050.
|
[5] |
ZHU L, FAN Y, HUANG X, et al. Patent bibliometric analysis for global trend of organoid technologies in the past decade[J]. iScience, 2022, 25(8):104728. doi:10.1016/j.isci.2022.104728.
|
[6] |
CHO S W, KIM S, KIM J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease[J]. Nat Biotechnol, 2013, 31(3):230-232. doi:10.1038/nbt.2507.
|
[7] |
DE POEL E, LEFFERTS J W, BEEKMAN J M. Intestinal organoids for Cystic Fibrosis research[J]. J Cyst Fibros, 2020, 19(Suppl 1):S60-S64. doi:10.1016/j.jcf.2019.11.002.
|
[8] |
DEKKERS J F, WIEGERINCK C L, DE JONGE H R, et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids[J]. Nat Med, 2013, 19(7):939-945. doi:10.1038/nm.3201.
|
[9] |
BIJVELDS M, ROOS F, MEIJSEN K F, et al. Rescue of chloride and bicarbonate transport by elexacaftor-ivacaftor-tezacaftor in organoid-derived CF intestinal and cholangiocyte monolayers[J]. J Cyst Fibros, 2022, 21(3):537-543. doi:10.1016/j.jcf.2021.12.006.
|
[10] |
RODENBURG L W, DELPIANO L, RAILEAN V, et al. Drug repurposing for cystic fibrosis: identification of drugs that induce CFTR-independent fluid secretion in nasal organoids[J]. Int J Mol Sci, 2022, 23(20):12657. doi:10.3390/ijms232012657.
|
[11] |
HIRAI H, LIANG X, SUN Y, et al. The sodium/glucose cotransporters as potential therapeutic targets for CF lung diseases revealed by human lung organoid swelling assay[J]. Mol Ther Methods Clin Dev, 2022, 24:11-19. doi:10.1016/j.omtm.2021.11.008.
|
[12] |
LANCASTER M A, RENNER M, MARTIN C A, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467):373-379. doi:10.1038/nature12517.
|
[13] |
DELL'AMICO C, ANGULO SALAVARRIA M M, TAKEO Y, et al. Microcephaly-associated protein WDR62 shuttles from the Golgi apparatus to the spindle poles in human neural progenitors[J]. Elife, 2023, 12:e81716. doi:10.7554/eLife.81716.
|
[14] |
AN H L, KUO H C, TANG T K. Modeling human primary microcephaly with hiPSC-derived brain organoids carrying CPAP-E1235V disease-associated mutant protein[J]. Front Cell Dev Biol, 2022, 10:830432. doi:10.3389/fcell.2022.830432.
|
[15] |
FAIR S R, SCHWIND W, JULIAN D L, et al. Cerebral organoids containing an AUTS2 missense variant model microcephaly[J]. Brain, 2023, 146(1):387-404. doi:10.1093/brain/awac244.
|
[16] |
PENISSON M, JIN M, WANG S, et al. Lis1 mutation prevents basal radial glia-like cell production in the mouse[J]. Hum Mol Genet, 2022, 31(6):942-957. doi:10.1093/hmg/ddab295.
|
[17] |
ZHANG W, MA L, YANG M, et al. Cerebral organoid and mouse models reveal a RAB39b-PI3K-mTOR pathway-dependent dysregulation of cortical development leading to macrocephaly/autism phenotypes[J]. Genes Dev, 2020, 34(7/8):580-597. doi:10.1101/gad.332494.119.
|
[18] |
BIGORGNE A E, FARIN H F, LEMOINE R, et al. TTC7A mutations disrupt intestinal epithelial apicobasal polarity[J]. J Clin Invest, 2014, 124(1):328-337. doi:10.1172/JCI71471.
|
[19] |
DUCLAUX-LORAS R, LEBRETON C, BERTHELET J, et al. UNC45A deficiency causes microvillus inclusion disease-like phenotype by impairing myosin VB-dependent apical trafficking[J]. J Clin Invest, 2022, 132(10):e154997. doi:10.1172/JCI154997.
|
[20] |
GUAN Y, XU D, GARFIN P M, et al. Human hepatic organoids for the analysis of human genetic diseases[J]. JCI Insight, 2017, 2(17):e94954. doi:10.1172/jci.insight.94954.
|
[21] |
SCHWANK G, KOO B K, SASSELLI V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients[J]. Cell Stem Cell, 2013, 13(6):653-658. doi:10.1016/j.stem.2013.11.002.
|
[22] |
GEURTS M H, DE POEL E, AMATNGALIM G D, et al. CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank[J]. Cell Stem Cell, 2020, 26(4):503-510.e7. doi:10.1016/j.stem.2020.01.019.
|
[23] |
DENG W L, GAO M L, LEI X L, et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients[J]. Stem Cell Reports, 2018, 10(4):1267-1281. doi:10.1016/j.stemcr.2018.02.003.
|
[24] |
ZHAO D, LEI W, HU S. Cardiac organoid - a promising perspective of preclinical model[J]. Stem Cell Res Ther, 2021, 12(1):272. doi:10.1186/s13287-021-02340-7.
|
[25] |
GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471. doi:10.1038/nature24644.
|
[26] |
AMARACHINTHA S P, MOURYA R, AYABE H, et al. Biliary organoids uncover delayed epithelial development and barrier function in biliary atresia[J]. Hepatology, 2022, 75(1):89-103. doi:10.1002/hep.32107.
|
[27] |
KAJI I, ROLAND J T, RATHAN-KUMAR S, et al. Cell differentiation is disrupted by MYO5B loss through Wnt/Notch imbalance[J]. JCI Insight, 2021, 6(16):e150416. doi:10.1172/jci.insight.150416.
|
[28] |
GOMEZ-MARIANO G, MATAMALA N, MARTINEZ S, et al. Liver organoids reproduce alpha-1 antitrypsin deficiency-related liver disease[J]. Hepatol Int, 2020, 14(1):127-137. doi:10.1007/s12072-019-10007-y.
|
[29] |
RAMALHO A S, FÜRSTOVÁ E, VONK A M, et al. Correction of CFTR function in intestinal organoids to guide treatment of cystic fibrosis[J]. Eur Respir J, 2021, 57(1):1902426[pii]. doi:10.1183/13993003.02426-2019.
|
[30] |
CONTI J, SORIO C, MELOTTI P. Organoid technology and its role for theratyping applications in cystic fibrosis[J]. Children(Basel), 2022, 10(1):4. doi:10.3390/children10010004.
|
[31] |
ROSSI G, MANFRIN A, LUTOLF M P. Progress and potential in organoid research[J]. Nat Rev Genet, 2018, 19(11):671-687. doi:10.1038/s41576-018-0051-9.
|
[32] |
HIRATSUKA K, MIYOSHI T, KROLL K T, et al. Organoid-on-a-chip model of human ARPKD reveals mechanosensing pathomechanisms for drug discovery[J]. Sci Adv, 2022, 8(38):eabq0866. doi:10.1126/sciadv.abq0866.
|
[33] |
LI S R, GULIEVA R E, HELMS L, et al. Glucose absorption drives cystogenesis in a human organoid-on-chip model of polycystic kidney disease[J]. Nat Commun, 2022, 13(1):7918. doi:10.1038/s41467-022-35537-2.
|
[34] |
GUNTI S, HOKE A, VU K P, et al. Organoid and spheroid tumor models: techniques and applications[J]. Cancers(Basel), 2021, 13(4):874. doi:10.3390/cancers13040874.
|
[35] |
RENNER H, SCHÖLER H R, BRUDER J M. Combining automated organoid workflows with artificial intelligence-based analyses: opportunities to build a new generation of interdisciplinary high-throughput screens for Parkinson's disease and beyond[J]. Mov Disord, 2021, 36(12):2745-2762. doi:10.1002/mds.28775.
|
[36] |
TRAN T, SONG C J, NGUYEN T, et al. A scalable organoid model of human autosomal dominant polycystic kidney disease for disease mechanism and drug discovery[J]. Cell Stem Cell, 2022, 29(7):1083-1101.e7. doi:10.1016/j.stem.2022.06.005.
|