Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (1): 44-49.doi: 10.11958/20231115
• Cell and Molecular Biology • Previous Articles Next Articles
DUAN Yunfeng1,2(), XU Yongjie1,3, YANG Tingting1,2, HUANG Changyudong1, ZHU Liying2,3, LI Xing4, PAN Wei1,2,△(
)
Received:
2023-09-11
Published:
2024-01-15
Online:
2024-01-18
Contact:
△E-mail:DUAN Yunfeng, XU Yongjie, YANG Tingting, HUANG Changyudong, ZHU Liying, LI Xing, PAN Wei. Construction and effect of a high glucose induced hippocampal neuron metabolic memory cell model in HT-22 mice[J]. Tianjin Medical Journal, 2024, 52(1): 44-49.
CLC Number:
组别 | HAT | HDAC |
---|---|---|
NG4组 | 0.61±0.03 | 0.61±0.02 |
NG8组 | 0.62±0.02 | 0.61±0.03 |
HG4组 | 0.80±0.01a | 0.82±0.01a |
HG8组 | 0.87±0.06b | 1.05±0.05b |
HG4NG4组 | 0.87±0.02b | 1.00±0.07b |
F | 72.467** | 123.289** |
Tab.1 Comparison of HAT and HDAC activities of HT-22 cells between five groups (n=3,OD450,$\bar{x}±s$)
组别 | HAT | HDAC |
---|---|---|
NG4组 | 0.61±0.03 | 0.61±0.02 |
NG8组 | 0.62±0.02 | 0.61±0.03 |
HG4组 | 0.80±0.01a | 0.82±0.01a |
HG8组 | 0.87±0.06b | 1.05±0.05b |
HG4NG4组 | 0.87±0.02b | 1.00±0.07b |
F | 72.467** | 123.289** |
组别 | HDAC4 | Bax | Bcl-2 | Caspase-3 |
---|---|---|---|---|
NG4组 | 0.37±0.01 | 0.29±0.01 | 0.78±0.02 | 0.28±0.01 |
NG8组 | 0.36±0.01 | 0.28±0.01 | 0.76±0.02 | 0.26±0.01 |
HG4组 | 0.54±0.06a | 0.53±0.02a | 0.66±0.03a | 0.63±0.01a |
HG8组 | 0.77±0.03b | 0.60±0.01b | 0.47±0.01b | 0.74±0.01b |
HG4NG4组 | 0.77±0.02b | 0.61±0.02b | 0.49±0.02b | 0.75±0.03b |
F | 113.820** | 427.796** | 127.964** | 464.712** |
Tab.2 Expression of HDAC4 and apoptosis related proteins in each group of cells (n=3,$\bar{x}±s$)
组别 | HDAC4 | Bax | Bcl-2 | Caspase-3 |
---|---|---|---|---|
NG4组 | 0.37±0.01 | 0.29±0.01 | 0.78±0.02 | 0.28±0.01 |
NG8组 | 0.36±0.01 | 0.28±0.01 | 0.76±0.02 | 0.26±0.01 |
HG4组 | 0.54±0.06a | 0.53±0.02a | 0.66±0.03a | 0.63±0.01a |
HG8组 | 0.77±0.03b | 0.60±0.01b | 0.47±0.01b | 0.74±0.01b |
HG4NG4组 | 0.77±0.02b | 0.61±0.02b | 0.49±0.02b | 0.75±0.03b |
F | 113.820** | 427.796** | 127.964** | 464.712** |
[1] | LACHIN J M, NATHAN D M. Understanding metabolic memory:The prolonged influence of glycemia during the Diabetes Control and Complications Trial (DCCT)on future risks of complications during the Study of the Epidemiology of Diabetes Interventions and Complications(EDIC)[J]. Diabetes Care, 2021, 44(10):2216-2224. doi:10.2337/dc20-3097. |
[2] | MILER R G, ORCHARD T J. Understanding metabolic memory:A tale of two studies[J]. Diabetes, 2020, 69(3):291-299. doi:10.2337/db19-0514. |
[3] | TULIGENGA R H. Intensive glycaemic control and cognitive decline in patients with type 2 diabetes: a meta-analysis[J]. Endocr Connect, 2015, 4(2):R16-24. doi:10.1530/EC-15-0004. |
[4] | AREOSA SASTRE A, VERNOOIJ R W, GONZÁLEZ-COLAÇO HARMAND M, et al. Effect of the treatment of Type 2 diabetes mellitus on the development of cognitive impairment and dementia[J]. Cochrane Database Syst Rev, 2017, 6(6):CD003804. doi:10.1002/14651858.CD003804.pub2. |
[5] | CUKIERMAN-YAFFE T, MCCLURE L A, RISOLI T, et al. The relationship between glucose control and cognitive function in people with diabetes after a lacunar stroke[J]. J Clin Endocrinol Metab, 2021, 106(4):e1521-e1528. doi:10.1210/clinem/dgab022. |
[6] | KATO M, NATARAJAN R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory[J]. Nat Rev Nephrol, 2019, 15(6):327-345. doi:10.1038/s41581-019-0135-6. |
[7] | ZHANG L, CHEN Z W, YANG S F, et al. MicroRNA-219 decreases hippocampal long-term potentiation inhibition and hippocampal neuronal cell apoptosis in type 2 diabetes mellitus mice by suppressing the NMDAR signaling pathway[J]. CNS Neurosci Ther, 2019, 25(1):69-77. doi:10.1111/cns.12981. |
[8] | CHANG P, TIAN Y, WILLIAMS A M, et al. Inhibition of histone deacetylase 6 protects hippocampal cells against mitochondria-mediated apoptosis in a model of severe oxygen-glucose deprivation[J]. Curr Mol Med, 2019, 19(9):673-682. doi:10.2174/1566524019666190724102755. |
[9] | XU Y, LI H, CHEN G, et al. Radix polygoni multiflori protects against hippocampal neuronal apoptosis in diabetic encephalopathy by inhibiting the HDAC4/JNK pathway[J]. Biomed Pharmacother, 2022, 153:113427. doi:10.1016/j.biopha.2022.113427. |
[10] | 许雯, 许永劼, 刘歆蕾, 等. TSA对不同糖浓度下小鼠海马神经元HT-22细胞凋亡的影响[J]. 天津医药, 2021, 49(4):349-353. |
XU W, XU Y J, LIU X L, et al. Effects of TSA on the apoptosis of HT-22 cells in mouse hippocampal neurons under different concentrations of glucose[J]. Tianjin Med J, 2021, 49(4):349-353. doi:10.11958/20202807. | |
[11] | ESIN R G, KHAIRULLIN I K, ESIN O R, et al. Diabetic encephalopathy:current insights and potential therapeutic strategies[J]. Zh Nevrol Psikhiatr ImSS Korsakova, 2021, 121(7):49-54. doi:10.17116/jnevro202112107149. |
[12] | VILLENEUVE L M, REDDYM A, LANTINGL L, et al. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes[J]. Proc Natl Acad Sci U S A, 2008, 105(26):9047-9052. doi:10.1073/pnas.0803623105. |
[13] | WANG Z, ZHAO H, GUAN W, et al. Metabolic memory in mitochondrial oxidative damage triggers diabetic retinopathy[J]. BMC Ophthalmol, 2018, 18(1):258. doi:10.1186/s12886-018-0921-0. |
[14] | WANG H, DENG J, CHEN L, et al. Acute glucose fluctuation induces inflammation and neurons apoptosis in hippocampal tissues of diabetic rats[J]. J Cell Biochem, 2021, 122(9):1239-1247. doi:10.1002/jcb.29523. |
[15] | ZHANG J H, ZHANGJ F, SONG J, et al. Effects of berberine on diabetes and cognitive impairment in an animal model:The mechanisms of action[J]. Am J Chin Med, 2021, 49(6):1399-1415. doi:10.1142/S0192415X21500658. |
[16] | 许永劼, 许雯, 陈钢, 等. 2种高糖诱导海马神经元模型应用及优势比较[J]. 中国比较医学杂志, 2021, 31(8):1-8. |
XU Y J, XU W, CHEN G, et al. Application and comparison of the advantages of two high-glucose-induced hippocampal neuron models[J]. Chinese Journal of Comparative Medicine, 2021, 31(8):1-8. doi:10.3969/j.issn.1671-7856.2021.08.001. | |
[17] | YAO Y, SONG Q, HU C, et al. Endothelial cell metabolic memory causes cardiovascular dysfunction in diabetes[J]. Cardiovasc Res, 2022, 118(1):196-211. doi:10.1093/cvr/cvab013. |
[18] | 任伟伟, 李守宏, 熊洁, 等. 人牙周膜细胞与高糖损伤的代谢记忆效应[J]. 中国组织工程研究, 2017, 21(4):532-537. |
REN W W, LI S H, XIONG J, et al. High glucose induces a metabolic memory in human periodontal ligament cells[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(4):532-537. doi:10.3969/j.issn.2095-4344.2017.04.007. | |
[19] | SHEN Y, WEI W, ZHOU D X, et al. Histone acetylation enzymes coordinate metabolism and gene expression[J]. Trends Plant Sci, 2015, 20(10):614-621. doi:10.1016/j.tplants.2015.07.005. |
[20] | 陈钢, 许永劼, 黄昶煜东, 等. 二苯乙烯苷、大黄素改善高糖诱导下小鼠海马神经元凋亡[J]. 天津医药, 2022, 50(6):561-565. |
CHEN G, XU Y J, HUANG C Y D, et al. Tetrahydroxystilbene glucoside and emodin improves the hippocampal neuronal apoptosis in mice induced by high glucose[J]. Tianjin Med J, 2022, 50(6):561-565.doi:10.11958/20212403. | |
[21] | ZHENG Z, CHEN H, LI J, et al. Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin[J]. Diabetes, 2012, 61(1):217-228. doi:10.2337/db11-0416. |
[22] | ZHONG Q, KOWLURU R A. Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon[J]. J Cell Biochem, 2010, 110(6):1306-1313. doi:10.1002/jcb.22644. |
[23] | JEBASINGH F, THOMAS N. Barker hypothesis and hypertension[J]. Front Public Health, 2021, 9:767545. doi:10.3389/fpubh.2021.767545. |
[24] | GAWLIN S K, GAWLIN S D, FILIP M, et al. Relationship of maternal high-fat diet during pregnancy and lactation to offspring health[J]. Nutr Rev, 2021, 79(6):709-725. doi:10.1152/ajpcell.00201.2022. |
[25] | ZHAO S, LI J, WANG N, et al. Fenofibrate suppresses cellular metabolic memory of high glucose in diabetic retinopathy via a sirtuin 1-dependent signalling pathway[J]. Mol Med Rep, 2015, 12(4):6112-1168. doi:10.3892/mmr.2015.4164. |
[26] | CERIELLO A, IHNNAT M A, THORPE J E. Clinical review 2:The "metabolic memory":is more than just tight glucose control necessary to prevent diabetic complications[J]. J Clin Endocrinol Metab, 2009, 94(2):410-415. doi:10.1210/jc.2008-1824. |
[27] | KINNEL B, SINGH S K, OPREA G, et al. Targeted therapy and mechanisms of drug resistance in breast cancer[J]. Cancers(Basel), 2023, 15(4):1320. doi:10.3390/cancers15041320. |
[28] | CHATTERJEE S, CASSEL R, SCHNEIDER A, et al. Reinstating plasticity and memory in a tauopathy mouse model with an acetyltransferase activator[J]. EMBO Mol Med, 2018, 10(11):e8587. doi:10.15252/emmm.201708587. |
[29] | GÜNAYDIN C, ÇELIK Z B, BILGE S S, et al. SAHA attenuates rotenone-induced toxicity in primary microglia and HT-22 cells[J]. Toxicol Ind Health, 2021, 37(1):23-33. doi:10.1177/0748233720979278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||