Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (1): 68-72.doi: 10.11958/20231091
• Experimental Research • Previous Articles Next Articles
ZHAO Wanyong1(), LI Xiaohong2, WANG Jingjing3, SUN Hongtao3,△(
)
Received:
2023-09-01
Published:
2024-01-15
Online:
2024-01-18
Contact:
△E-mail:ZHAO Wanyong, LI Xiaohong, WANG Jingjing, SUN Hongtao. Long-term mild hypothermia promotes neuroprotection by antagonizing the rebound of intracranial pressure after traumatic brain injury in rats[J]. Tianjin Medical Journal, 2024, 52(1): 68-72.
CLC Number:
组别 | BWC/% | ICP/mmHg |
---|---|---|
NT组 | 90.41±1.51 | 26.10±0.84 |
MHT4 h组 | 86.57±1.85a | 23.40±1.34a |
MHT24 h组 | 82.07±2.04ab | 18.50±0.92ab |
MHT48 h组 | 76.42±1.76ac | 11.40±0.98ac |
F | 116.000** | 347.900** |
Tab.1 Changes of water content of brain tissue and ICP in each group (n=3,$\bar{x}±s$)
组别 | BWC/% | ICP/mmHg |
---|---|---|
NT组 | 90.41±1.51 | 26.10±0.84 |
MHT4 h组 | 86.57±1.85a | 23.40±1.34a |
MHT24 h组 | 82.07±2.04ab | 18.50±0.92ab |
MHT48 h组 | 76.42±1.76ac | 11.40±0.98ac |
F | 116.000** | 347.900** |
组别 | BrdU | BrdU/NeuN | CD86 |
---|---|---|---|
NT组 | 39.83±5.27 | 27.33±4.76 | 81.33±6.95 |
MHT4 h组 | 65.50±9.42a | 55.00±7.56a | 59.33±5.65a |
MHT24 h组 | 53.83±6.08ab | 44.50±4.63ab | 70.83±7.99ab |
MHT48 h组 | 76.17±8.61ac | 64.50±8.26ac | 48.83±8.23ac |
F | 25.690** | 35.860** | 22.460** |
Tab.2
组别 | BrdU | BrdU/NeuN | CD86 |
---|---|---|---|
NT组 | 39.83±5.27 | 27.33±4.76 | 81.33±6.95 |
MHT4 h组 | 65.50±9.42a | 55.00±7.56a | 59.33±5.65a |
MHT24 h组 | 53.83±6.08ab | 44.50±4.63ab | 70.83±7.99ab |
MHT48 h组 | 76.17±8.61ac | 64.50±8.26ac | 48.83±8.23ac |
F | 25.690** | 35.860** | 22.460** |
组别 | Bcl-2 | Bax |
---|---|---|
NT组 | 0.59±0.07 | 1.47±0.15 |
MHT4 h组 | 1.10±0.15a | 1.08±0.13a |
MHT24 h组 | 0.80±0.11ab | 0.80±0.10ab |
MHT48 h组 | 1.34±0.12ac | 0.49±0.15ac |
F | 25.230** | 29.820** |
Tab.3 Comparison of expression levels of Bcl-2 and Bax between the four groups (n=3,$\bar{x}±s$)
组别 | Bcl-2 | Bax |
---|---|---|
NT组 | 0.59±0.07 | 1.47±0.15 |
MHT4 h组 | 1.10±0.15a | 1.08±0.13a |
MHT24 h组 | 0.80±0.11ab | 0.80±0.10ab |
MHT48 h组 | 1.34±0.12ac | 0.49±0.15ac |
F | 25.230** | 29.820** |
组别 | iNOS | IL-10 | Arg-1 |
---|---|---|---|
NT组 | 1.07±0.21 | 0.35±0.10 | 0.38±0.07 |
MHT4 h组 | 0.64±0.12a | 0.63±0.10a | 0.73±0.10a |
MHT24 h组 | 0.83±0.13ab | 0.51±0.06ab | 0.59±0.09ab |
MHT48 h组 | 0.49±0.11ac | 0.82±0.06ac | 0.94±0.06ac |
F | 16.980** | 31.720** | 48.480** |
Tab.4 Comparison of expression levels of iNOS, IL-10 and Arg-1 between the four groups (n=3,$\bar{x}±s$)
组别 | iNOS | IL-10 | Arg-1 |
---|---|---|---|
NT组 | 1.07±0.21 | 0.35±0.10 | 0.38±0.07 |
MHT4 h组 | 0.64±0.12a | 0.63±0.10a | 0.73±0.10a |
MHT24 h组 | 0.83±0.13ab | 0.51±0.06ab | 0.59±0.09ab |
MHT48 h组 | 0.49±0.11ac | 0.82±0.06ac | 0.94±0.06ac |
F | 16.980** | 31.720** | 48.480** |
[1] | MAAS A I R, MENON D K, MANLEY G T, et al. Traumatic brain injury:progress and challenges in prevention,clinical care,and research[J]. Lancet Neurol, 2022, 21(11):1004-1060. doi:10.1016/S1474-4422(22)00309-X. |
[2] | FENG J F, ZHANG K M, JIANG J Y, et al. Effect of therapeutic mild hypothermia on the genomics of the hippocampus after moderate traumatic brain injury inrats[J]. Neurosurgery, 2010, 67(3):730-742. doi:10.1227/01.NEU.0000378023.81727.6E. |
[3] | ARRICH J, SCHÜTZ N, OPPENAUER J, et al. Hypothermia for neuroprotection in adults after cardiac arrest[J]. Cochrane Database Syst Rev, 2023, 5(5):CD004128. doi:10.1002/14651858.CD004128.pub5. |
[4] | ARRICH J, HERKNER H, MÜLLNER D, et al. Targeted temperature management after cardiac arrest. A systematic review and meta-analysis of animal studies[J]. Resuscitation, 2021, 162:47-55. doi:10.1016/j.resuscitation.2021.02.002. |
[5] | BAKER T S, DURBIN J, TROIANI Z, et al. Therapeutic hypothermia for intracerebral hemorrhage:Systematic review and meta-analysis of the experimental and clinical literature[J]. Int J Stroke, 2022, 17(5):506-516. doi:10.1177/17474930211044870. |
[6] | CUI H, YANG Z, XIAO P, et al. Effects of different target temperatures on angiogenesis and neurogenesis following resuscitation in a porcine model after cardiac arrest[J]. Shock, 2021, 55(1):67-73. doi:10.1097/SHK.0000000000001559. |
[7] | TOADER A M, HOTEIUC O, BIDIAN C, et al. Neuronal apoptosis can be prevented by the combined therapy with melatonin and hypothermia in a neonatal rat model of hypoxic-ischemic encephalopathy[J]. Med Pharm Rep, 2021, 94(2):197-207. doi:10.15386/mpr-1903. |
[8] | CLIFTON M G, VALADKA P A, AISUKU I P, et al. Future of rewarming in therapeutic hypothermia for traumatic brain injury:a personalized plan[J]. Ther Hypothermia Temp Manag, 2011, 1(1):3-7. doi:10.1089/ther.2010.1500. |
[9] | LI Z, ZHANG H, CAO C, et al. Gangliosides combined with mild hypothermia provides neuroprotection in a rat model of traumatic brain injury[J]. Neuroreport, 2021, 32(13):1113-1121. doi:10.1097/WNR.0000000000001703. |
[10] | YAN C, MAO J, YAO C, et al. Neuroprotective effects of mild hypothermia against traumatic brain injury by the involvement of the Nrf2/ARE pathway[J]. Brain Behav, 2022, 12(8):e2686. doi:10.1002/brb3.2686. |
[11] | YOKOBORI S, YOKOTA H. Targeted temperature management in traumatic brain injury[J]. J Intensive Care, 2016, 4:28. doi:10.1186/s40560-016-0137-4. |
[12] | WASSINK G, DAVIDSON J O, DHILLON S K, et al. Therapeutic hypothermia in neonatal hypoxic-ischemic encephalopathy[J]. Curr Neurol Neurosci Rep, 2019, 19(2):2. doi:10.1007/s11910-019-0916-0. |
[13] | HUI J, FENG J, TU Y, et al. Safety and efficacy of long-term mild hypothermia for severe traumatic brain injury with refractory intracranial hypertension(LTH-1):A multicenter randomized controlled trial[J]. EClinicalMedicine, 2021, 32:100732. doi:10.1016/j.eclinm.2021.100732. |
[14] | MCPHERSON C, FRYMOYER A, ORTINAU C M, et al. Management of comfort and sedation in neonates with neonatal encephalopathy treated with therapeutic hypothermia[J]. Semin Fetal Neonatal Med, 2021, 26(4):101264. doi:10.1016/j.siny.2021.101264. |
[15] | LEE J H, WEI L, GU X, et al. Therapeutic effects of pharmacologically induced hypothermia against traumatic brain injury in mice[J]. J Neurotrauma, 2014, 31(16):1417-1430. doi:10.1089/neu.2013.3251. |
[16] | LU W, ZHU Z, SHI D, et al. Cerebrolysin alleviates early brain injury after traumatic brain injury by inhibiting neuroinflammation and apoptosis via TLR signaling pathway[J]. Acta Cir Bras, 2022, 37(6):e370605. doi:10.1590/acb370605. |
[17] | ZHANG C, LIU C, LI F, et al. Extracellular mitochondria activate microglia and contribute to neuroinflammation in traumatic brain injury[J]. Neurotox Res, 2022, 40(6):2264-2277. doi:10.1007/s12640-022-00566-8. |
[18] | KWON H S, KOH S H. Neuroinflammation in neurodegenerative disorders:the roles of microglia and astrocytes[J]. Transl Neurodegener, 2020, 9(1):42. doi:10.1186/s40035-020-00221-2. |
[19] | OH T K, HEO E, SONG I A, et al. Increased glucose variability during long-term therapeutic hypothermia as a predictor of poor neurological outcomes and mortality:A retrospective study[J]. Ther Hypothermia Temp Manag, 2020, 10(2):106-113. doi:10.1089/ther.2019.0004. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||