Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (2): 129-135.doi: 10.11958/20230437
• Experimental Research • Previous Articles Next Articles
ZHONG Jiashuai(), FENG Yumei△(
)
Received:
2023-03-27
Revised:
2023-05-08
Published:
2024-02-15
Online:
2024-01-26
Contact:
△ E-mail:ZHONG Jiashuai, FENG Yumei. Comparative study on the directed differentiation ability of mouse bone marrow and adipose-derived mesenchymal stem cells[J]. Tianjin Medical Journal, 2024, 52(2): 129-135.
CLC Number:
基因名称 | 引物序列(5′→3′) | 产物大小/bp |
---|---|---|
Gapdh | 上游:ATTGTCAGCAATGCATCCTG | 102 |
下游:ATGGACTGTGGTCATGAGCC | ||
CD29 | 上游:CCTGTAACTCCGACGCCTTT | 137 |
下游:AAGGTCCCCACTCAGCAATG | ||
CD34 | 上游:TTTCCTGATGAACCGTCGCA | 165 |
下游:GCAGGGTTGTGAGGTACTGT | ||
CD44 | 上游:ACCTTGGCCACCACTCCTAAT | 118 |
下游:TCACATGGGAGTCTTCACTTGG | ||
CD45 | 上游:CTTTGCTTATGTGGCGTGTGT | 139 |
下游:TTATCCCCTTCTGATGCGCC | ||
CD90 | 上游:TCCAAGTCGGAACTCTTGGC | 133 |
下游:TCCAGGCGAAGGTTTTGGTT | ||
Runx2 | 上游:CTCTGCACCAAGTCCTTTTAATC | 104 |
下游:AGGAGGGGTAAGACTGGTCATAG | ||
Sp7 | 上游:CTGAGAGAGGAGCAGATCCC | 135 |
下游:GTGAGCTTCTTCCTGGGTAGG | ||
Sox9 | 上游:AGGAAGTCGGTGAAGAACGG | 167 |
下游:GGACCCTGAGATTGCCCAGA | ||
Col2a1 | 上游:ATGAGGGAGCGGTAGAGACC | 190 |
下游:GCCCTAATTTTCGGGCATCC | ||
Pparg | 上游:GAGCACTTCACAAGAAATTACC | 192 |
下游:GAACTCCATAGTGGAAGCCT | ||
Cebpa | 上游:CAAGAACAGCAACGAGTACCG | 120 |
下游:AGGCGGTCATTGTCACTGGT |
Tab.1 Primer sequences
基因名称 | 引物序列(5′→3′) | 产物大小/bp |
---|---|---|
Gapdh | 上游:ATTGTCAGCAATGCATCCTG | 102 |
下游:ATGGACTGTGGTCATGAGCC | ||
CD29 | 上游:CCTGTAACTCCGACGCCTTT | 137 |
下游:AAGGTCCCCACTCAGCAATG | ||
CD34 | 上游:TTTCCTGATGAACCGTCGCA | 165 |
下游:GCAGGGTTGTGAGGTACTGT | ||
CD44 | 上游:ACCTTGGCCACCACTCCTAAT | 118 |
下游:TCACATGGGAGTCTTCACTTGG | ||
CD45 | 上游:CTTTGCTTATGTGGCGTGTGT | 139 |
下游:TTATCCCCTTCTGATGCGCC | ||
CD90 | 上游:TCCAAGTCGGAACTCTTGGC | 133 |
下游:TCCAGGCGAAGGTTTTGGTT | ||
Runx2 | 上游:CTCTGCACCAAGTCCTTTTAATC | 104 |
下游:AGGAGGGGTAAGACTGGTCATAG | ||
Sp7 | 上游:CTGAGAGAGGAGCAGATCCC | 135 |
下游:GTGAGCTTCTTCCTGGGTAGG | ||
Sox9 | 上游:AGGAAGTCGGTGAAGAACGG | 167 |
下游:GGACCCTGAGATTGCCCAGA | ||
Col2a1 | 上游:ATGAGGGAGCGGTAGAGACC | 190 |
下游:GCCCTAATTTTCGGGCATCC | ||
Pparg | 上游:GAGCACTTCACAAGAAATTACC | 192 |
下游:GAACTCCATAGTGGAAGCCT | ||
Cebpa | 上游:CAAGAACAGCAACGAGTACCG | 120 |
下游:AGGCGGTCATTGTCACTGGT |
细胞 | CD29/×10-3 | CD44/×10-3 | CD90/×10-3 | CD34 | CD45 |
---|---|---|---|---|---|
BM-MSCs | 1.861±0.288 | 0.562±0.120 | 0.456±0.017 | 0 | 0 |
AD-MSCs | 0.805±0.208 | 0.433±0.158 | 0.851±0.261 | 0 | 0 |
Tab.2 The gene expression levels of two types of MSCs
细胞 | CD29/×10-3 | CD44/×10-3 | CD90/×10-3 | CD34 | CD45 |
---|---|---|---|---|---|
BM-MSCs | 1.861±0.288 | 0.562±0.120 | 0.456±0.017 | 0 | 0 |
AD-MSCs | 0.805±0.208 | 0.433±0.158 | 0.851±0.261 | 0 | 0 |
细胞 | 诱导分化前 | 诱导分化后 | ||
---|---|---|---|---|
Runx2/×10-5 | Sp7/×10-6 | Runx2/×10-4 | Sp7/×10-5 | |
BM-MSCs | 4.85±0.99 | 6.11±1.17 | 2.42±0.44 | 4.66±3.73 |
AD-MSCs | 4.36±1.13 | 2.01±1.22 | 4.61±0.92 | 4.17±3.54 |
t | 0.510 | 3.024* | 3.923* | 1.171 |
Tab.3 Comparison of expression levels of MSCs marker genes before and after osteogenic differentiation between the two groups
细胞 | 诱导分化前 | 诱导分化后 | ||
---|---|---|---|---|
Runx2/×10-5 | Sp7/×10-6 | Runx2/×10-4 | Sp7/×10-5 | |
BM-MSCs | 4.85±0.99 | 6.11±1.17 | 2.42±0.44 | 4.66±3.73 |
AD-MSCs | 4.36±1.13 | 2.01±1.22 | 4.61±0.92 | 4.17±3.54 |
t | 0.510 | 3.024* | 3.923* | 1.171 |
细胞 | 诱导分化前 | 诱导分化后 | ||
---|---|---|---|---|
Sox9/×10-5 | Col2a1/×10-6 | Sox9/×10-3 | Col2a1/×10-5 | |
BM-MSCs | 9.22±1.67 | 2.12±1.88 | 1.71±0.08 | 2.35±1.48 |
AD-MSCs | 4.24±0.99 | 1.58±1.16 | 0.98±0.15 | 1.80±1.38 |
t | 4.282* | 0.326 | 4.786* | 0.365 |
Tab.4 Comparison of expression levels of MSCs marker genes before and after induction of chondroblast differentiation between two groups
细胞 | 诱导分化前 | 诱导分化后 | ||
---|---|---|---|---|
Sox9/×10-5 | Col2a1/×10-6 | Sox9/×10-3 | Col2a1/×10-5 | |
BM-MSCs | 9.22±1.67 | 2.12±1.88 | 1.71±0.08 | 2.35±1.48 |
AD-MSCs | 4.24±0.99 | 1.58±1.16 | 0.98±0.15 | 1.80±1.38 |
t | 4.282* | 0.326 | 4.786* | 0.365 |
细胞 | 诱导分化前 | 诱导分化后 | ||
---|---|---|---|---|
Pparg/×10-5 | Cebpa/×10-4 | Pparg/×10-3 | Cebpa/×10-2 | |
BM-MSCs | 4.92±1.48 | 6.91±0.95 | 1.70±0.87 | 0.72±0.05 |
AD-MSCs | 4.86±2.54 | 7.47±1.96 | 10.50±6.52 | 2.00±0.35 |
t | 0.032 | 0.406 | 2.123* | 5.593* |
Tab.5 Comparison of expression levels of MSCs marker genes before and after induction of adipogenic differentiation between the two groups
细胞 | 诱导分化前 | 诱导分化后 | ||
---|---|---|---|---|
Pparg/×10-5 | Cebpa/×10-4 | Pparg/×10-3 | Cebpa/×10-2 | |
BM-MSCs | 4.92±1.48 | 6.91±0.95 | 1.70±0.87 | 0.72±0.05 |
AD-MSCs | 4.86±2.54 | 7.47±1.96 | 10.50±6.52 | 2.00±0.35 |
t | 0.032 | 0.406 | 2.123* | 5.593* |
[1] | ZHANG L, MA X J, FEI Y Y, et al. Stem cell therapy in liver regeneration:Focus on mesenchymal stem cells and induced pluripotent stem cells[J]. Pharmacol Ther, 2022, 232:108004. doi:10.1016/j.pharmthera.2021.108004. |
[2] | HOANG D M, PHAM P T, BACH T Q, et al. Stem cell-based therapy for human diseases[J]. Signal Transduct Target Ther, 2022, 7(1):272. doi:10.1038/s41392-022-01134-4. |
[3] | MOHAMED-AHMED S, YASSIN M A, RASHAD A, et al. Comparison of bone regenerative capacity of donor-matched human adipose-derived and bone marrow mesenchymal stem cells[J]. Cell Tissue Res, 2021, 383(3):1061-1075. doi:10.1007/s00441-020-03315-5. |
[4] | ZHU X, YAN T, CHENG C, et al. Mesenchymal stem cells(MSCs)in targeted drug delivery:Literature review and exploratory data on migrating and differentiation capacities of bone MSCs into hepatic progenitor cells[J]. Curr Top Med Chem, 2021, 21(14):1251-1267. doi:10.2174/1568026621666210708092728. |
[5] | GUO Z, SUN C, YANG H, et al. Regulation of neural differentiation of ADMSCs using graphene-mediated wireless-localized electrical signals driven by electromagnetic induction[J]. Adv Sci(Weinh), 2022, 9(14):e2104424. doi:10.1002/advs.202104424. |
[6] | XU Y, LIU X, LI Y, et al. SPION-MSCs enhance therapeutic efficacy in sepsis by regulating MSC-expressed TRAF1-dependent macrophage polarization[J]. Stem Cell Res Ther, 2021, 12(1):531. doi:10.1186/s13287-021-02593-2. |
[7] | CHEN R, XIE Y, ZHONG X, et al. MSCs derived from amniotic fluid and umbilical cord require different administration schemes and exert different curative effects on different tissues in rats with CLP-induced sepsis[J]. Stem Cell Res Ther, 2021, 12(1):164. doi:10.1186/s13287-021-02218-8. |
[8] | RUSCH R M, OGAWA Y, SATO S, et al. MSCs become collagen-type I producing cells with different phenotype in allogeneic and syngeneic bone marrow transplantation[J]. Int J Mol Sci, 2021, 22(9):4895. doi:10.3390/ijms22094895. |
[9] | HUANG C P, HSU K C, WU C P, et al. Osteogenic differentiation from mouse adipose-derived stem cells and bone marrow stem cells[J]. Chin J Physiol, 2022, 65(1):21-29. doi:10.4103/cjp.cjp_64_21. |
[10] | STUKEL SHAH J M, LUNDQUIST B, MACAITIS J, et al. Comparative evaluation of mesenchymal stromal cell growth and osteogenic differentiation on a shape memory polymer scaffold[J]. J Biomed Mater Res B Appl Biomater, 2022, 110(9):2063-2074. doi:10.1002/jbm.b.35061. |
[11] | GROTTKAU B E, YANG X, ZHANG L, et al. Comparison of effects of mechanical stretching on osteogenic potential of ASCs and BMSCs[J]. Bone Res, 2013, 1(3):282-290. doi:10.4248/BR201303006. |
[12] | HIWATASHI N, HIRANO S, SUZUKI R, et al. Comparison of ASCs and BMSCs combined with atelocollagen for vocal fold scar regeneration[J]. Laryngoscope, 2016, 126(5):1143-1150. doi:10.1002/lary.25667. |
[13] | MOHAMED-AHMED S, FRISTAD I, LIE S A, et al. Adipose-derived and bone marrow mesenchymal stem cells:a donor-matched comparison[J]. Stem Cell Res Ther, 2018, 9(1):168. doi:10.1186/s13287-018-0914-1. |
[14] | HAYASHI O, KATSUBE Y, HIROSE M, et al. Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow,periosteum,and adipose tissue[J]. Calcif Tissue Int, 2008, 82(3):238-247. doi:10.1007/s00223-008-9112-y. |
[15] | ALMALKI S G, AGRAWAL D K. Key transcription factors in the differentiation of mesenchymal stem cells[J]. Differentiation, 2016, 92(1/2):41-51. doi:10.1016/j.diff.2016.02.005. |
[16] | ZHAO Z, ZHAO M, XIAO G, et al. Gene transfer of the Runx2 transcription factor enhances osteogenic activity of bone marrow stromal cells in vitro and in vivo[J]. Mol Ther, 2005, 12(2):247-253. doi:10.1016/j.ymthe.2005.03.009. |
[17] | SU X, LIAO L, SHUAI Y, et al. MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway[J]. Cell Death Dis, 2015, 6(8): e1851. doi:10.1038/cddis.2015.221. |
[18] | IAQUINTA M R, LANZILLOTTI C, MAZZIOTTA C, et al. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies[J]. Theranostics, 2021, 11(13):6573-6591. doi:10.7150/thno.55664. |
[19] | HOANG D M, PHAM P T, BACH T Q, et al. Stem cell-based therapy for human diseases[J]. Signal Transduct Target Ther, 2022, 7(1):272. doi:10.1038/s41392-022-01134-4. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||