Tianjin Medical Journal ›› 2025, Vol. 53 ›› Issue (5): 556-560.doi: 10.11958/20251227
• Review • Previous Articles
DENG Zihao1(), HUANG Xinyang1, ZHONG Kunjiang1, ZHAO Bo2,△(
)
Received:
2025-03-25
Revised:
2025-04-23
Published:
2025-05-15
Online:
2025-05-28
Contact:
△ E-mail:zhaobo3009@bjsjth.cn
E-mail:13811055741@163.com;zhaobo3009@bjsjth.cn
DENG Zihao, HUANG Xinyang, ZHONG Kunjiang, ZHAO Bo. The application progress of nanomaterials in atherosclerotic cardiovascular disease[J]. Tianjin Medical Journal, 2025, 53(5): 556-560.
CLC Number:
[1] | SURMA S, FILIPIAK K J. Inflammation and autoimmunity in atherosclerosis[J]. Reumatologia, 2022, 60(1):1-3. doi:10.5114/reum.2022.113364. |
[2] | MURRAY C, GBD 2021 COLLABORATORS. Findings from the Global Burden of Disease Study 2021[J]. Lancet, 2024, 403(10440):2259-2262. doi:10.1016/S0140-6736(24)00769-4. |
[3] | SORIA-FLORIDO M T, CASTAÑER O, LASSALE C, et al. Dysfunctional high-density lipoproteins are associated with a greater incidence of acute coronary syndrome in a population at high cardiovascular risk:a nested case-control study[J]. Circulation, 2020, 141(6):444-453. doi:10.1161/CIRCULATIONAHA.119.041658. |
[4] | FRĄK W, WOJTASIŃSKA A, LISIŃSKA W, et al. Pathophysiology of cardiovascular diseases:new insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease[J]. Biomedicines, 2022, 10(8):1938. doi:10.3390/biomedicines10081938. |
[5] | ZHU N, GUO Z F, KAZAMA K, et al. Epigenetic regulation of vascular smooth muscle cell phenotypic switch and neointimal formation by PRMT5[J]. Cardiovasc Res, 2023, 119(12):2244-2255. doi:10.1093/cvr/cvad110. |
[6] | RIDKER P M, MOORTHY M V, COOK N R, et al. Inflammation,cholesterol,lipoprotein(a),and 30-year cardiovascular outcomes in women[J]. N Engl J Med, 2024, 391(22):2087-2097. doi:10.1056/NEJMoa2405182. |
[7] | NAKAMURA M, SADOSHIMA J. Mechanisms of physiological and pathological cardiac hypertrophy[J]. Nat Rev Cardiol, 2018, 15(7):387-407. doi:10.1038/s41569-018-0007-y. |
[8] | WEBER B N, GILES J T, LIAO K P. Shared inflammatory pathways of rheumatoid arthritis and atherosclerotic cardiovascular disease[J]. Nat Rev Rheumatol, 2023, 19(7):417-428. doi:10.1038/s41584-023-00969-7. |
[9] | HUANG X, SONG J, ZHANG X, et al. Understanding drug interactions in antiplatelet therapy for atherosclerotic vascular disease:a systematic review[J]. CNS Neurosci Ther, 2025, 31(2):e70258. doi:10.1111/cns.70258. |
[10] | GAWAZ M, GEISLER T, BORST O. Current concepts and novel targets for antiplatelet therapy[J]. Nat Rev Cardiol, 2023, 20(9):583-599. doi:10.1038/s41569-023-00854-6. |
[11] | SURMA S, SAHEBKAR A, BANACH M. Coffee or tea:Anti-inflammatory properties in the context of atherosclerotic cardiovascular disease prevention[J]. Pharmacol Res, 2023, 187:106596. doi:10.1016/j.phrs.2022.106596. |
[12] | BARUNGI S, HERNÁNDEZ-CAMARERO P, MORENO-TERRIBAS G, et al. Clinical implications of inflammation in atheroma formation and novel therapies in cardiovascular diseases[J]. Front Cell Dev Biol, 2023, 11:1148768. doi:10.3389/fcell.2023.1148768. |
[13] | ISSELBACHER E M, PREVENTZA O, HAMILTON BLACK J 3rd, et al. 2022 ACC/AHA Guideline for the diagnosis and management of aortic disease: a report of the american heart association/American college of cardiology joint committee on clinical practice guidelines[J]. Circulation, 2022, 146(24):e334-e482. doi:10.1161/CIR.0000000000001106. |
[14] | NI Z, YU H, WANG L, et al. Recent research progress on polyphosphazene-based drug delivery systems[J]. J Mater Chem B, 2020, 8(8):1555-1575. doi:10.1039/c9tb02517k. |
[15] | MAHJOUBIN-TEHRAN M, KOVANEN P T, XU S, et al. Cyclodextrins:potential therapeutics against atherosclerosis[J]. Pharmacol Ther, 2020, 214:107620. doi:10.1016/j.pharmthera.2020.107620. |
[16] | LI S, SUN S, LUO J, et al. Polymer single-chain nanoparticles:shaping solid surfactants[J]. Macromol Rapid Commun, 2024, 45(21):e2400393. doi:10.1002/marc.202400393. |
[17] | SARFRAZ M, AFZAL A, YANG T, et al. Development of dual drug loaded nanosized liposomal formulation by a reengineered ethanolic injection method and its pre-clinical pharmacokinetic studies[J]. Pharmaceutics, 2018, 10(3):151. doi:10.3390/pharmaceutics10030151. |
[18] | CHANG C Y, HUANG S H, CHEN C Y, et al. Monocyte-adhesive peptidyl liposomes for harnessing monocyte homing to tumor tissues[J]. J Control Release, 2025, 382:113672. doi:10.1016/j.jconrel.2025.113672. |
[19] | YU S, XIA G, YANG N, et al. Noble metal nanoparticle-based photothermal therapy:development and application in effective cancer therapy[J]. Int J Mol Sci, 2024, 25(11):5632. doi:10.3390/ijms25115632. |
[20] | DOCKERY L T, DANIEL M C. Targeted doxorubicin-loaded dendronized gold nanoparticles[J]. Pharmaceutics, 2023, 15(8):2103. doi:10.3390/pharmaceutics15082103. |
[21] | IMRAISH A, THIAB T A, ZIHLIF M, et al. Anti-inflammatory and antioxidant potential of green synthesized iron zinc oxide(Fe0.25-ZnO)nanoparticles of the elaeagnus angustifolia[J]. Chem Biodivers, 2024, 21(9):e202401060. doi:10.1002/cbdv.202401060. |
[22] | YANG L, ZANG G, LI J, et al. Cell-derived biomimetic nanoparticles as a novel drug delivery system for atherosclerosis: predecessors and perspectives[J]. Regen Biomater, 2020, 7(4):349-358. doi:10.1093/rb/rbaa019. |
[23] | CHEN J, ZHANG X, MILLICAN R, et al. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis[J]. Adv Drug Deliv Rev, 2021, 170:142-199. doi:10.1016/j.addr.2021.01.005. |
[24] | PANG L, ZHANG C, QIN J, et al. A novel strategy to achieve effective drug delivery:exploit cells as carrier combined with nanoparticles[J]. Drug Deliv, 2017, 24(1):83-91. doi:10.1080/10717544.2016.1230903. |
[25] | WANG Y, ZHANG K, LI T, et al. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications[J]. Theranostics, 2021, 11(1):164-180. doi:10.7150/thno.47841. |
[26] | WANG J, WANG J, ZHONG J, et al. LRG1 promotes atherosclerosis by inducing macrophage M1-like polarization[J]. Proc Natl Acad Sci U S A, 2024, 121(35):e2405845121. doi:10.1073/pnas.2405845121. |
[27] | THEOFILIS P, OIKONOMOU E, TSIOUFIS K, et al. The role of macrophages in atherosclerosis:pathophysiologic mechanisms and treatment considerations[J]. Int J Mol Sci, 2023, 24(11):9568. doi:10.3390/ijms24119568. |
[28] | KOJIMA Y, VOLKMER J P, MCKENNA K, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis[J]. Nature, 2016, 536(7614):86-90. doi:10.1038/nature18935. |
[29] | GHOLAMIN S, MITRA S S, FEROZE A H, et al. Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors[J]. Sci Transl Med, 2017, 9(381):eaaf2968. doi:10.1126/scitranslmed.aaf2968. |
[30] | CUI Y, YU H, BU Z, et al. Focus on the role of the NLRP3 inflammasome in multiple sclerosis:pathogenesis,diagnosis,and therapeutics[J]. Front Mol Neurosci, 2022, 15:894298. doi:10.3389/fnmol.2022.894298. |
[31] | LUO Q, DAI L, LI J, et al. Intracellular and extracellular synergistic therapy for restoring macrophage functions via anti-CD47 antibody-conjugated bifunctional nanoparticles in atherosclerosis[J]. Bioact Mater, 2024, 34:326-337. doi:10.1016/j.bioactmat.2023.12.024. |
[32] | WU Z, ZHOU M, TANG X, et al. Carrier-free trehalose-based nanomotors targeting macrophages in inflammatory plaque for treatment of atherosclerosis[J]. ACS Nano, 2022, 16(3):3808-3820. doi:10.1021/acsnano.1c08391. |
[33] | ZHU L, ZHONG Y, YAN M, et al. Macrophage membrane-encapsulated dopamine-modified poly cyclodextrin multifunctional biomimetic nanoparticles for atherosclerosis therapy[J]. ACS Appl Mater Interfaces, 2024, 16(25):32027-32044. doi:10.1021/acsami.4c04431. |
[34] | LIU D, YANG A, LI Y, et al. Targeted delivery of rosuvastatin enhances treatment of hyperhomocysteinemia-induced atherosclerosis using macrophage membrane-coated nanoparticles[J]. J Pharm Anal, 2024, 14(9):100937. doi:10.1016/j.jpha.2024.01.005. |
[35] | LIBBY P, HANSSON G K. From focal lipid storage to systemic inflammation:JACC review topic of the week[J]. J Am Coll Cardiol, 2019, 74(12):1594-1607. doi:10.1016/j.jacc.2019.07.061. |
[36] | WANG S, WANG Y, LAI X, et al. Minimalist nanocomplex with dual regulation of endothelial function and inflammation for targeted therapy of inflammatory vascular diseases[J]. ACS Nano, 2023, 17(3):2761-2781. doi:10.1021/acsnano.2c11058. |
[37] | LIU J, YU X, BRAUCHT A, et al. N-cadherin targeted melanin nanoparticles reverse the endothelial-mesenchymal transition in vascular endothelial cells to potentially slow the progression of atherosclerosis and cancer[J]. ACS Nano, 2024, 18(11):8229-8247. doi:10.1021/acsnano.3c12281. |
[38] | DURHAM A L, SPEER M Y, SCATENA M, et al. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness[J]. Cardiovasc Res, 2018, 114(4):590-600. doi:10.1093/cvr/cvy010. |
[39] | CHIN D D, POON C, WANG J, et al. miR-145 micelles mitigate atherosclerosis by modulating vascular smooth muscle cell phenotype[J]. Biomaterials, 2021, 273:120810. doi:10.1016/j.biomaterials.2021.120810. |
[40] | YU J, MA Y, ZHANG X, et al. β-cyclodextrin and hyaluronic acid-modified targeted nanodelivery system for atherosclerosis prevention[J]. ACS Appl Mater Interfaces, 2024, 16(27):35421-35437. doi:10.1021/acsami.4c01540. |
[41] | HUILCAMAN R, VENTURINI W, FUENZALIDA L, et al. Platelets,a key cell in inflammation and atherosclerosis progression[J]. Cells, 2022, 11(6):1014. doi:10.3390/cells11061014. |
[42] | COENEN D M, HEINZMANN A, KAREL M, et al. The multifaceted contribution of platelets in the emergence and aftermath of acute cardiovascular events[J]. Atherosclerosis, 2021, 319:132-141. doi:10.1016/j.atherosclerosis.2020.12.017. |
[43] | FONTANA F, MOLINARO G, MORONI S, et al. Biomimetic platelet-cloaked nanoparticles for the delivery of anti-inflammatory curcumin in the treatment of atherosclerosis[J]. Adv Healthc Mater, 2024, 13(15):e2302074. doi:10.1002/adhm.202302074. |
[44] | CHAI Y, SHANGGUAN L, YU H, et al. Near infrared light-activatable platelet-mimicking NIR-Ⅱ NO nano-prodrug for precise atherosclerosis theranostics[J]. Adv Sci(Weinh), 2024, 11(3):e2304994. doi:10.1002/advs.202304994. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||