Tianjin Medical Journal ›› 2022, Vol. 50 ›› Issue (11): 1139-1145.doi: 10.11958/20220086
• Cell and Molecular Biology • Previous Articles Next Articles
HUANG Qiuyang1(), WANG Wei1, LUO Shu2, ZHENG Wenwu1, FENG Jian1, YE Qiang1, ZHENG Shuzhan1,△(
)
Received:
2022-01-24
Revised:
2022-06-14
Published:
2022-11-15
Online:
2022-11-11
Contact:
ZHENG Shuzhan
E-mail:2274152499@qq.com;toshuzhan@126.com
HUANG Qiuyang, WANG Wei, LUO Shu, ZHENG Wenwu, FENG Jian, YE Qiang, ZHENG Shuzhan. PM2.5 aggravates the inflammatory response of Raw264.7 macrophages by disrupting autophagic flow through TLR4[J]. Tianjin Medical Journal, 2022, 50(11): 1139-1145.
CLC Number:
组别 | 0 h | 6 h | 12 h | 18 h | 24 h | 48 h |
---|---|---|---|---|---|---|
对照组 | 100.0±1.1 | 99.0±1.2 | 101.0±1.1 | 100.0±1.4 | 100.0±1.3 | 100.0±1.2 |
PM2.5组 | 100.0±1.6 | 91.0±2.0 | 82.3±3.2 | 67.0±2.4 | 52.0±2.3 | 41.0±2.8 |
t | 0.292 | 1.345* | 3.363* | 4.178* | 4.765* | 5.193* |
Tab.1 Comparison of the effect of PM2.5 on macrophage activity at different times between the two groups
组别 | 0 h | 6 h | 12 h | 18 h | 24 h | 48 h |
---|---|---|---|---|---|---|
对照组 | 100.0±1.1 | 99.0±1.2 | 101.0±1.1 | 100.0±1.4 | 100.0±1.3 | 100.0±1.2 |
PM2.5组 | 100.0±1.6 | 91.0±2.0 | 82.3±3.2 | 67.0±2.4 | 52.0±2.3 | 41.0±2.8 |
t | 0.292 | 1.345* | 3.363* | 4.178* | 4.765* | 5.193* |
组别 | IL-1β | IL-18 | IL-10 |
---|---|---|---|
对照组 | 25.47±8.70 | 25.32±5.79 | 45.59±7.55 |
PM2.5组 | 156.79±13.77a | 129.71±9.75a | 24.31±3.82a |
HCQ组 | 124.09±11.46a | 106.57±9.13a | 19.32±3.40a |
PM2.5+HCQ组 | 205.55±29.13abc | 218.54±11.56abc | 7.24±2.52abc |
F | 55.819** | 217.096** | 61.207** |
Tab.2 Comparison of expressions of inflammatory factor levels between the four groups
组别 | IL-1β | IL-18 | IL-10 |
---|---|---|---|
对照组 | 25.47±8.70 | 25.32±5.79 | 45.59±7.55 |
PM2.5组 | 156.79±13.77a | 129.71±9.75a | 24.31±3.82a |
HCQ组 | 124.09±11.46a | 106.57±9.13a | 19.32±3.40a |
PM2.5+HCQ组 | 205.55±29.13abc | 218.54±11.56abc | 7.24±2.52abc |
F | 55.819** | 217.096** | 61.207** |
组别 | IL-1β | IL-18 | IL-10 |
---|---|---|---|
对照组 | 25.54±8.70 | 24.99±5.81 | 46.11±7.56 |
PM2.5组 | 157.19±11.84a | 130.21±9.65a | 23.10±4.12a |
PM2.5+TAK-242组 | 74.54±6.47ab | 72.56±7.53ab | 86.92±10.13ab |
F | 129.037** | 132.806** | 52.373** |
Tab.3 Comparison of inflammatory factor levels after inhibition of TLR4 between the three groups
组别 | IL-1β | IL-18 | IL-10 |
---|---|---|---|
对照组 | 25.54±8.70 | 24.99±5.81 | 46.11±7.56 |
PM2.5组 | 157.19±11.84a | 130.21±9.65a | 23.10±4.12a |
PM2.5+TAK-242组 | 74.54±6.47ab | 72.56±7.53ab | 86.92±10.13ab |
F | 129.037** | 132.806** | 52.373** |
[1] | KOLLANUS V, PRANK M, GENS A, et al. Mortality due to Vegetation Fire-Originated PM2.5 Exposure in Europe-Assessment for the Years 2005 and 2008[J]. Environ Health Perspect, 2017, 125(1):30-37. doi:10.1289/EHP194. |
[2] | HOEK G, KRISHNAN R M, BEELEN R, et al. Long-term air pollution exposure and cardio- respiratory mortality:a review[J]. Environ Health, 2013, 12(1):43. doi:10.1186/1476-069X-12-43. |
[3] | GENG J, LIU H, GE P, et al. PM2.5 promotes plaque vulnerability at different stages of atherosclerosis and the formation of foam cells via TLR4/MyD88/NFκB pathway[J]. Ecotoxicol Environ Saf, 2019, 176:76-84. doi:10.1016/j.ecoenv.2019.03.068. |
[4] | ZHU X C, ZHAO P, LU Y G, et al. Potential injurious effects of the fine particulate PM2.5 on the progression of atherosclerosis in apoE-deficient mice by activating platelets and leukocytes[J]. Arch Med Sci, 2019, 15(1):250-261. doi:10.5114/aoms.2018.81039. |
[5] | GOTTLIEB R A, MENTZER R M. Autophagy during cardiac stress: joys and frustrations of autophagy[J]. Annu Rev Physiol, 2010, 72:45-59. doi:10.1146/annurev-physiol-021909-135757. |
[6] | EVANS T D, JEONG S J, ZHANG X Y, et al. TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis[J]. Autophagy, 2018, 14(4):724-726. doi:10.1080/15548627.2018.1434373. |
[7] | MARTINET W, COORNAERT I, PUYLAERT P, et al. Macrophage death as a pharmacological target in atherosclerosis[J]. Front Pharmacol, 2019, 10:306. doi:10.3389/fphar.2019.00306. |
[8] | DAI P Y, SHEN D, SHEN J K, et al. The roles of Nrf2 and autophagy in modulating inflammation mediated by TLR4 - NFκB in A549 cell exposed to layer house particulate matter 2.5 (PM2.5)[J]. Chemosphere, 2019, 235:1134-1145. doi:10.1016/j.chemosphere.2019.07.002. |
[9] | ZHOU Z, SHAO T, QIN M, et al. The effects of autophagy on vascular endothelial cells induced by airborne PM2.5[J]. J Environ Sci (China), 2018, 66:182-187. doi:10.1016/j.jes.2017.05.019. |
[10] | LANDRIGAN P J, FULLER R, ACOSTA N J R, et al. The Lancet Commission on pollution and health[J]. Lancet, 2018, 391(10119):462-512. doi:10.1016/S0140-6736(17)32345-0. |
[11] | MCGUINN L A, SCHNEIDER A, MCGARRAH R W, et al. Association of long-term PM2.5 exposure with traditional and novel lipid measures related to cardiovascular disease risk[J]. Environ Int, 2019, 122:193-200. doi:10.1016/j.envint.2018.11.001. |
[12] | GOLD D R, LITONJUA A, SCHWARTZ J, et al. Ambient pollution and heart rate variability[J]. Circulation, 2000, 101(11):1267-1273. doi:10.1161/01.cir.101.11.1267. |
[13] | ZHANG J, LIANG S, NING R, et al. PM2.5-induced inflammation and lipidome alteration associated with the development of atherosclerosis based on a targeted lipidomic analysis[J]. Environ Int, 2020, 136:105444. doi:10.1016/j.envint.2019.105444. |
[14] | RAO X, ZHONG J, MAISEYEU A, et al. CD36-dependent 7-ketocholesterol accumulation in macrophages mediates progression of atherosclerosis in response to chronic air pollution exposure[J]. Circ Res, 2014, 115(9):770-780. doi:10.1161/CIRCRESAHA.115.304666. |
[15] | TABAS I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency[J]. Arterioscler Thromb Vasc Biol, 2005, 25(11):2255-2264. doi:10.1161/01.ATV.0000184783.04864.9f. |
[16] | ENDO Y, FURUTA A, NISHINO I. Danon disease:a phenotypic expression of LAMP-2 deficiency[J]. Acta Neuropathol, 2015, 129(3):391-398. doi:10.1007/s00401-015-1385-4. |
[17] | VINDIS C. Autophagy:an emerging therapeutic target in vascular diseases[J]. Br J Pharmacol, 2015, 172(9):2167-2178. doi:10.1111/bph.13052. |
[18] | WANG Y, ZHONG Y, LIAO J, et al. PM2.5-related cell death patterns[J]. Int J Med Sci, 2021, 18(4):1024-1029. doi:10.7150/ijms.46421. |
[19] | HOSEINI Z, SEPAHVAND F, RASHIDI B, et al. NLRP3 inflammasome:Its regulation and involvement in atherosclerosis[J]. J Cell Physiol, 2018, 233(3):2116-2132. doi:10.1002/jcp. 25930. |
[20] | ROSHAN M H, TAMBO A, PACE N P. The Role of TLR2, TLR4, and TLR9 in the pathogenesis of atherosclerosis[J]. Int J Inflam, 2016, 2016:1532832. doi:10.1155/2016/1532832. |
[21] | SAITOH T, AKIRA S. Regulation of inflammasomes by autophagy[J]. J Allergy Clin Immunol, 2016, 138(1):28-36. doi:10.1016/j.jaci.2016.05.009. |
[22] | BIASIZZO M, KOPITAR-JERALA N. Interplay between NLRP3 inflammasome and autophagy[J]. Front Immunol, 2020, 11:591803. doi:10.3389/fimmu.2020.591803. |
[23] | LAI M Y, YAO H, SHAH S Z A, et al. The NLRP3-Caspase 1 inflammasome negatively regulates autophagy via TLR4-TRIF in prion peptide-infected microglia[J]. Front Aging Neurosci, 2018, 10:116. doi:10.3389/fnagi.2018.00116. |
[24] | LI M Z, HUA Q H, SHAO Y T, et al. Circular RNA circBbs9 promotes PM2.5-induced lung inflammation in mice via NLRP3 inflammasome activation[J]. Environ Int, 2020, 143:105976.doi:10.1016/j.envint.2020.105976. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||