[1] |
ZENG X, HUANG Q, LONG S L, et al. Mitochondrial dysfunction in polycystic ovary syndrome[J]. DNA Cell Biol, 2020, 39(8):1401-1409. doi:10.1089/dna.2019.5172.
|
[2] |
IOVINE J C, CLAYPOOL S M, ALDER N N. Mitochondrial compartmentalization:emerging themes in structure and function[J]. Trends Biochem Sci, 2021, 46(11):902-917. doi:10.1016/j.tibs.2021.06.003.
|
[3] |
COZZOLINO M, HERRAIZ S, TITUS S, et al. Transcriptomic landscape of granulosa cells and peripheral blood mononuclear cells in women with PCOS compared to young poor responders and women with normal response[J]. Hum Reprod, 2022, 37(6):1274-1286. doi:10.1093/humrep/deac069.
|
[4] |
SAEED N, HAMZAH I H, AL-GHARRAWI S A R. Polycystic ovary syndrome dependency on mtDNA mutation;copy number and its association with insulin resistance[J]. BMC Res Notes, 2019, 12(1):455. doi:10.1186/s13104-019-4453-3.
|
[5] |
MALAMOULI M, LEVINGER I, MCAINCH A J, et al. The mitochondrial profile in women with polycystic ovary syndrome:impact of exercise[J]. J Mol Endocrinol, 2022, 68(3):R11-R23. doi:10.1530/jme-21-0177.
|
[6] |
ANDRISSE S, BILLINGS K, XUE P, et al. Insulin signaling displayed a differential tissue-specific response to low-dose dihydrotestosterone in female mice[J]. Am J Physiol Endocrinol Metab, 2018, 314(4):E353-E365. doi:10.1152/ajpendo.00195.2017.
|
[7] |
RAJSKA A, BUSZEWSKA-FORAJTA M, RACHOŃ D, et al. Metabolomic insight into polycystic ovary syndrome-an overview[J]. Int J Mol Sci, 2020, 21(14):4853. doi:10.3390/ijms21144853.
|
[8] |
SHEN Q, BI H, YU F, et al. Nontargeted metabolomic analysis of skeletal muscle in a dehydroepiandrosterone-induced mouse model of polycystic ovary syndrome[J]. Mol Reprod Dev, 2019, 86(4):370-378. doi:10.1002/mrd.23111.
|
[9] |
DABRAVOLSKI S A, NIKIFOROV N G, EID A H, et al. Mitochondrial dysfunction and chronic inflammation in polycystic ovary syndrome[J]. Int J Mol Sci, 2021, 22(8):3923. doi:10.3390/ijms22083923.
|
[10] |
TEFAGH G, PAYAB M, QORBANI M, et al. Effect of vitamin E supplementation on cardiometabolic risk factors,inflammatory and oxidative markers and hormonal functions in PCOS(polycystic ovary syndrome):a systematic review and meta-analysis[J]. Sci Rep, 2022, 12(1):5770. doi:10.1038/s41598-022-09082-3.
|
[11] |
HE F, HUANG Y, SONG Z, et al. Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance[J]. J Exp Med, 2021, 218(3):e20201416. doi:10.1084/jem.20201416.
|
[12] |
FATIMA Q, AMIN S, KAWA I A, et al. Evaluation of antioxidant defense markers in relation to hormonal and insulin parameters in women with polycystic ovary syndrome (PCOS):A case-control study[J]. Diabetes Metab Syndr, 2019, 13(3):1957-1961. doi:10.1016/j.dsx.2019.04.032.
|
[13] |
SUNDARARAMAN S S, PETERS L J F, JANSEN Y, et al. Adipocyte calcium sensing receptor is not involved in visceral adipose tissue inflammation or atherosclerosis development in hyperlipidemic Apoe-/- mice[J]. Sci Rep, 2021, 11(1):10409. doi:10.1038/s41598-021-89893-y.
|
[14] |
ZHAO S, HENG N, WANG H, et al. Mitofusins:from mitochondria to fertility[J]. Cell Mol Life Sci, 2022, 79(7):370. doi:10.1007/s00018-022-04386-z.
|
[15] |
MARRONE G, GUERRIERO C, PALAZZETTI D, et al. Vegan diet health benefits in metabolic syndrome[J]. Nutrients, 2021, 13(3):817. doi:10.3390/nu13030817.
|
[16] |
SUN L, TIAN H, XUE S, et al. Circadian clock genes REV-ERBs inhibits granulosa cells apoptosis by regulating mitochondrial biogenesis and autophagy in polycystic ovary syndrome[J]. Front Cell Dev Biol, 2021, 9:658112. doi:10.3389/fcell.2021.658112.
|
[17] |
郭琴, 高瑞萍, 陶莹. PGC-1ɑ在多囊卵巢综合征模型大鼠卵巢组织的表达变化[J]. 四川大学学报(医学版), 2020, 51(6):817-821.
|
|
GUO Q, GAO R P, TAO Y. Expression of PGC-1α in ovarian tissue of PCOS rat model[J]. J Sichuan Univ (Med Sci Edi), 2020, 51(6):817-821. doi:10.12182/20200960603.
|
[18] |
LIU Y N, QIN Y, WU B, et al. DNA methylation in polycystic ovary syndrome:emerging evidence and challenges[J]. Reprod Toxicol, 2022, 111:11-19. doi:10.1016/j.reprotox.2022.04.010.
|
[19] |
CHENG G P, GUO S M, YIN Y, et al. Aberrant expression of mitochondrial SAM transporter SLC25A26 impairs oocyte maturation and early development in mice[J]. Oxid Med Cell Longev, 2022, 2022:1681623. doi:10.1155/2022/1681623.
|
[20] |
DENG Y, LI H, SONG Y, et al. Whole genome transcriptomic analysis of ovary granulosa cells revealed an anti-apoptosis regulatory gene DLGAP5 in polycystic ovary syndrome[J]. Front Endocrinol (Lausanne), 2022, 13:781149. doi:10.3389/fendo.2022. 781149.
|
[21] |
REFAIE M M M, EL-HUSSIENY M, ABDELRAHEEM W M. Diacerein ameliorates induced polycystic ovary in female rats via modulation of inflammasome/caspase1/IL1β and Bax/Bcl2 pathways[J]. Naunyn Schmiedebergs Arch Pharmacol, 2022, 395(3):295-304. doi:10.1007/s00210-021-02175-2.
|
[22] |
CAO J, HUO P, CUI K, et al. Follicular fluid-derived exosomal miR-143-3p/miR-155-5p regulate follicular dysplasia by modulating glycolysis in granulosa cells in polycystic ovary syndrome[J]. Cell Commun Signal, 2022, 20(1):61. doi:10.1186/s12964-022-00876-6.
|
[23] |
GIACOMELLO M, PYAKUREL A, GLYTSOU C, et al. The cell biology of mitochondrial membrane dynamics[J]. Nat Rev Mol Cell Biol, 2020, 21(4):204-224. doi:10.1038/s41580-020-0210-7.
|
[24] |
ROSSMANN M P, DUBOIS S M, AGARWAL S, et al. Mitochondrial function in development and disease[J]. Dis Model Mech, 2021, 14(6):dmm048912. doi:10.1242/dmm.048912.
|
[25] |
CASUSO R A, HUERTAS J R. The emerging role of skeletal muscle mitochondrial dynamics in exercise and ageing[J]. Ageing Res Rev, 2020, 58:101025. doi:10.1016/j.arr.2020.101025.
|
[26] |
KUMARIYA S, UBBA V, JHA R K, et al. Autophagy in ovary and polycystic ovary syndrome:role,dispute and future perspective[J]. Autophagy, 2021, 17(10):2706-2733. doi:10.1080/15548627. 2021.1938914.
|
[27] |
ZHANG C, HU J, WANG W, et al. HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS[J]. FASEB J, 2020, 34(7):9563-9574. doi:10.1096/fj. 202000605RR.
|
[28] |
DERETIC V. Autophagy in inflammation,infection,and immunometabolism[J]. Immunity, 2021, 54(3):437-453. doi:10.1016/j.immuni.2021.01.018.
|
[29] |
ABOUSSAHOUD W S, SMITH H, STEVENS A, et al. The expression and activity of Toll-like receptors in the preimplantation human embryo suggest a new role for innate immunity[J]. Hum Reprod, 2021, 36(10):2661-2675. doi:10.1093/humrep/deab188.
|
[30] |
RODRíGUEZ-VARELA C, HERRAIZ S, LABARTA E. Mitochondrial enrichment in infertile patients:a review of different mitochondrial replacement therapies[J]. Ther Adv Reprod Health, 2021, 15:1-16. doi:10.1177/26334941211023544.
|
[31] |
VISIOLI F, INGRAM A, BECKMAN J S, et al. Strategies to protect against age-related mitochondrial decay:Do natural products and their derivatives help?[J]. Free Radic Biol Med, 2022, 178:330-346. doi:10.1016/j.freeradbiomed.2021.12.008.
|
[32] |
OQANI R K, SO S, LEE Y, et al. Artificial oocyte:development and potential application[J]. Cells, 2022, 11(7):1135. doi:10.3390/cells11071135.
|
[33] |
OKTAY K, BALTACI V, SONMEZER M, et al. Oogonial precursor cell-derived autologous mitochondria injection to improve outcomes in women with multiple IVF failures due to low oocyte quality:a clinical translation[J]. Reprod Sci, 2015, 22(12):1612-1617. doi:10.1177/1933719115612137.
|
[34] |
LABARTA E, DE LOS SANTOS M J, HERRAIZ S, et al. Autologous mitochondrial transfer as a complementary technique to intracytoplasmic sperm injection to improve embryo quality in patients undergoing in vitro fertilization-a randomized pilot study[J]. Fertil Steril, 2019, 111(1):86-96. doi:10.1016/j.fertnstert.2018.09.023.
|