天津医药 ›› 2025, Vol. 53 ›› Issue (1): 24-28.doi: 10.11958/20241277
收稿日期:
2024-09-04
修回日期:
2024-10-14
出版日期:
2025-01-15
发布日期:
2025-02-06
通讯作者:
△E-mail:作者简介:
王若宇(1999),女,硕士在读,主要从事抗癌药物方面研究。E-mail:基金资助:
WANG Ruoyu(), ZHANG Yu, WANG Jiahui, ZHANG Zhanxia(
)
Received:
2024-09-04
Revised:
2024-10-14
Published:
2025-01-15
Online:
2025-02-06
Contact:
△E-mail:王若宇, 张宇, 王佳慧, 张占霞. 复方苦参注射液减轻肝癌大鼠5-氟尿嘧啶化疗不良反应的机制研究[J]. 天津医药, 2025, 53(1): 24-28.
WANG Ruoyu, ZHANG Yu, WANG Jiahui, ZHANG Zhanxia. Study on the mechanism of Fu Fang Ku Shen Zhu She Ye alleviating adverse reactions of 5-fluorouracil chemotherapy in rats with liver cancer[J]. Tianjin Medical Journal, 2025, 53(1): 24-28.
摘要:
目的 探讨复方苦参注射液对肝癌大鼠5-氟尿嘧啶(5-FU)化疗不良反应的影响及其作用机制。方法 通过二乙基亚硝胺(DEN)构建肝癌大鼠模型,将其分为肝癌组,化疗组和化疗+复方低(L)、中(M)、高剂量(H)组。化疗组、化疗+复方组大鼠成模后24 h腹腔注射5-FU 100 mg/kg,1次/周,化疗+复方L、M、H组分别腹腔注射复发苦参注射液0.7、1.4、2.8 mL/kg,1次/d,连续8周。比较各组心功能、心肌损伤标志物水平和心肌组织病理改变,酶联免疫吸附试验检测血清脑钠肽(BNP)、肌钙蛋白I(cTnI)、肌酸激酶同工酶(CK-MB)水平,Western blot检测心肌组织葡萄糖调节蛋白78(GRP78)、激活转录因子6(ATF6)、内质网应激相关蛋白(CHOP)蛋白表达,比较各组免疫功能指标变化。结果 相比肝癌组,化疗组的左室射血分数(LVEF)、左室收缩末期前壁厚度(LVAWs)降低(P<0.05),左室收缩末期内径(LVEDs)和BNP、cTnI、CK-MB水平升高(P<0.05),心肌组织肿瘤坏死因子α(TNF-α)、白细胞介素(IL)-1β、IL-6水平和GRP78、ATF6、CHOP蛋白表达升高(P<0.05),CD3+、CD4+、CD4+/CD8+和IgG、IgM、IgA水平降低(P<0.05),心肌组织排列杂乱、空泡和炎性细胞浸润。相比化疗组,化疗+复方L、M、H组的上述指标水平和心肌病理变化有明显改善,且高剂量组改善作用更明显。结论 复方苦参注射液减轻5-FU所致肝癌大鼠心脏毒性损伤可能与缓解内质网应激有关,还能缓解免疫抑制情况。
中图分类号:
组别 | LVEDd/mm | LVAWs/mm | LVAWd/mm | ||
---|---|---|---|---|---|
肝癌组 | 6.15±0.32 | 1.60±0.19 | 0.98±0.17 | ||
化疗组 | 6.23±0.40 | 0.90±0.20a | 1.02±0.20 | ||
化疗+复方L组 | 6.20±0.47 | 1.00±0.18 | 1.02±0.23 | ||
化疗+复方M组 | 6.10±0.52 | 1.45±0.10bc | 1.05±0.27 | ||
化疗+复方H组 | 6.12±0.46 | 1.48±0.15bc | 1.03±0.23 | ||
F | 0.098 | 21.072** | 0.073 | ||
组别 | LVEF | LVEDs/mm | |||
肝癌组 | 0.707±0.040 | 3.20±0.21 | |||
化疗组 | 0.468±0.038a | 4.87±0.31a | |||
化疗+复方L组 | 0.535±0.049b | 4.22±0.35b | |||
化疗+复方M组 | 0.588±0.036bc | 3.72±0.31bc | |||
化疗+复方H组 | 0.652±0.045bcd | 3.28±0.37bcd | |||
F | 30.641** | 29.191** |
表1 各组的心功能比较
Tab.1 Comparison of cardiac function between the five groups (n=6,$\bar{x}$±s)
组别 | LVEDd/mm | LVAWs/mm | LVAWd/mm | ||
---|---|---|---|---|---|
肝癌组 | 6.15±0.32 | 1.60±0.19 | 0.98±0.17 | ||
化疗组 | 6.23±0.40 | 0.90±0.20a | 1.02±0.20 | ||
化疗+复方L组 | 6.20±0.47 | 1.00±0.18 | 1.02±0.23 | ||
化疗+复方M组 | 6.10±0.52 | 1.45±0.10bc | 1.05±0.27 | ||
化疗+复方H组 | 6.12±0.46 | 1.48±0.15bc | 1.03±0.23 | ||
F | 0.098 | 21.072** | 0.073 | ||
组别 | LVEF | LVEDs/mm | |||
肝癌组 | 0.707±0.040 | 3.20±0.21 | |||
化疗组 | 0.468±0.038a | 4.87±0.31a | |||
化疗+复方L组 | 0.535±0.049b | 4.22±0.35b | |||
化疗+复方M组 | 0.588±0.036bc | 3.72±0.31bc | |||
化疗+复方H组 | 0.652±0.045bcd | 3.28±0.37bcd | |||
F | 30.641** | 29.191** |
组别 | BNP | cTnI | CK-MB |
---|---|---|---|
肝癌组 | 263.94±10.81 | 738.36±12.49 | 982.48±21.11 |
化疗组 | 443.68±11.62a | 973.14±15.62a | 1 287.66±34.48a |
化疗+复方L组 | 410.62±12.41b | 914.08±14.71b | 1 201.39±23.56b |
化疗+复方M组 | 383.50±13.82bc | 866.32±13.99bc | 1 135.72±28.31bc |
化疗+复方H组 | 343.83±12.81bcd | 799.87±15.63bcd | 1 058.56±27.44bcd |
F | 189.170** | 242.606** | 115.913** |
表2 各组心肌损伤标志物水平比较
Tab.2 Comparison of myocardial injury markers between the five groups (n=6,ng/L,$\bar{x}$±s)
组别 | BNP | cTnI | CK-MB |
---|---|---|---|
肝癌组 | 263.94±10.81 | 738.36±12.49 | 982.48±21.11 |
化疗组 | 443.68±11.62a | 973.14±15.62a | 1 287.66±34.48a |
化疗+复方L组 | 410.62±12.41b | 914.08±14.71b | 1 201.39±23.56b |
化疗+复方M组 | 383.50±13.82bc | 866.32±13.99bc | 1 135.72±28.31bc |
化疗+复方H组 | 343.83±12.81bcd | 799.87±15.63bcd | 1 058.56±27.44bcd |
F | 189.170** | 242.606** | 115.913** |
组别 | TNF-α | IL-1β | IL-6 |
---|---|---|---|
肝癌组 | 31.84±2.18 | 2.23±0.18 | 13.81±1.12 |
化疗组 | 58.43±2.29a | 9.12±0.25a | 28.63±2.63a |
化疗+复方L组 | 52.68±2.41b | 7.51±0.39b | 24.59±1.87b |
化疗+复方M组 | 46.51±2.33bc | 5.46±0.48bc | 21.36±1.93bc |
化疗+复方H组 | 39.44±2.27bcd | 3.88±0.20bcd | 17.61±1.58bcd |
F | 125.597** | 444.470** | 56.385** |
表3 各组大鼠心肌组织炎症因子水平比较
Tab.3 Comparison of inflammatory factors in myocardial tissue between the five groups (n=6,ng/L,$\bar{x}$±s)
组别 | TNF-α | IL-1β | IL-6 |
---|---|---|---|
肝癌组 | 31.84±2.18 | 2.23±0.18 | 13.81±1.12 |
化疗组 | 58.43±2.29a | 9.12±0.25a | 28.63±2.63a |
化疗+复方L组 | 52.68±2.41b | 7.51±0.39b | 24.59±1.87b |
化疗+复方M组 | 46.51±2.33bc | 5.46±0.48bc | 21.36±1.93bc |
化疗+复方H组 | 39.44±2.27bcd | 3.88±0.20bcd | 17.61±1.58bcd |
F | 125.597** | 444.470** | 56.385** |
组别 | GRP78 | ATF6 | CHOP |
---|---|---|---|
肝癌组 | 0.21±0.05 | 0.30±0.04 | 0.38±0.05 |
化疗组 | 0.81±0.05a | 0.94±0.05a | 1.05±0.05a |
化疗+复方L组 | 0.67±0.04b | 0.78±0.05b | 0.89±0.04b |
化疗+复方M组 | 0.52±0.05bc | 0.59±0.06bc | 0.71±0.06bc |
化疗+复方H组 | 0.36±0.05bcd | 0.45±0.04bcd | 0.53±0.04bcd |
F | 159.315** | 146.288** | 179.106** |
表4 各组大鼠心肌组织GRP78、ATF6、CHOP蛋白表达比较
Tab.4 Comparison of GRP78, ATF6 and CHOP in myocardial tissue between the five groups (n=6,$\bar{x}$±s)
组别 | GRP78 | ATF6 | CHOP |
---|---|---|---|
肝癌组 | 0.21±0.05 | 0.30±0.04 | 0.38±0.05 |
化疗组 | 0.81±0.05a | 0.94±0.05a | 1.05±0.05a |
化疗+复方L组 | 0.67±0.04b | 0.78±0.05b | 0.89±0.04b |
化疗+复方M组 | 0.52±0.05bc | 0.59±0.06bc | 0.71±0.06bc |
化疗+复方H组 | 0.36±0.05bcd | 0.45±0.04bcd | 0.53±0.04bcd |
F | 159.315** | 146.288** | 179.106** |
组别 | CD3+/% | CD4+/% | CD4+/CD8+ |
---|---|---|---|
肝癌组 | 72.42±2.46 | 45.85±1.89 | 1.48±0.12 |
化疗组 | 58.18±3.21a | 31.54±1.96a | 0.94±0.10a |
化疗+复方L组 | 62.44±2.48b | 34.58±1.73b | 1.15±0.11b |
化疗+复方M组 | 66.81±2.70bc | 38.43±1.54bc | 1.30±0.12bc |
化疗+复方H组 | 69.95±2.08bcd | 41.96±1.28bcd | 1.49±0.09bcd |
F | 28.796** | 67.498** | 27.887** |
表5 各组肝癌大鼠CD3+、CD4+、CD4+/CD8+比较
Tab.5 Comparison of CD3+, CD4+ and CD4+/CD8+ between the five groups (n=6,$\bar{x}$±s)
组别 | CD3+/% | CD4+/% | CD4+/CD8+ |
---|---|---|---|
肝癌组 | 72.42±2.46 | 45.85±1.89 | 1.48±0.12 |
化疗组 | 58.18±3.21a | 31.54±1.96a | 0.94±0.10a |
化疗+复方L组 | 62.44±2.48b | 34.58±1.73b | 1.15±0.11b |
化疗+复方M组 | 66.81±2.70bc | 38.43±1.54bc | 1.30±0.12bc |
化疗+复方H组 | 69.95±2.08bcd | 41.96±1.28bcd | 1.49±0.09bcd |
F | 28.796** | 67.498** | 27.887** |
组别 | IgG | IgM | IgA |
---|---|---|---|
肝癌组 | 15.84±1.58 | 1.87±0.10 | 2.68±0.13 |
化疗组 | 9.04±1.22a | 1.32±0.12a | 1.89±0.14a |
化疗+复方L组 | 10.84±1.31b | 1.46±0.12b | 2.11±0.11b |
化疗+复方M组 | 12.93±1.08bc | 1.61±0.11bc | 2.34±0.12bc |
化疗+复方H组 | 14.57±1.16bcd | 1.79±0.13bcd | 2.57±0.15bcd |
F | 27.623** | 23.597** | 37.224** |
表6 各组大鼠IgG、IgM、IgA水平比较
Tab.6 Comparison of IgG, IgM and IgA between the five groups (n=6,ng/L,$\bar{x}$±s)
组别 | IgG | IgM | IgA |
---|---|---|---|
肝癌组 | 15.84±1.58 | 1.87±0.10 | 2.68±0.13 |
化疗组 | 9.04±1.22a | 1.32±0.12a | 1.89±0.14a |
化疗+复方L组 | 10.84±1.31b | 1.46±0.12b | 2.11±0.11b |
化疗+复方M组 | 12.93±1.08bc | 1.61±0.11bc | 2.34±0.12bc |
化疗+复方H组 | 14.57±1.16bcd | 1.79±0.13bcd | 2.57±0.15bcd |
F | 27.623** | 23.597** | 37.224** |
[1] | CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China:a secondary analysis of the global cancer statistics 2020[J]. Chin Med J(Engl), 2021, 134(7):783-791. doi:10.1097/CM9.0000000000001474. |
[2] | TONG Z, CHENG M, YU Y, et al. Correlation between pharmacokinetic parameters of 5-fluorouracil and related metabolites and adverse reactions in East-Asian patients with advanced colorectal cancer[J]. Cancer Chemother Pharmacol, 2022, 89(3):323-330. doi:10.1007/s00280-021-04387-y. |
[3] | MOGHADDAM Z, ROSTAMI M, ZERAATCHI A, et al. Evaluation of 5-fluorouracil-induced cardiotoxicity:role of cardiac biomarkers[J]. Exp Oncol, 2022, 44(1):60-66. doi:10.32471/exp-oncology.2312-8852.vol-44-no-1.17496. |
[4] | 蒋锐沅, 王同彪, 满婷婷, 等. 敷和备化方联合肝动脉化疗栓塞术治疗肝郁脾虚型原发性肝癌患者的近期疗效及其对血浆血管生成因子水平的影响研究[J]. 中国全科医学, 2020, 23(33):4214-4221. |
JIANG R Y, WANG T B, MAN T T, et al. Short-term curative and plasma angiogenic responses to Fuhe Beihua decoction with transcatheter arterial chemoembolization in primary liver cancer patients with liver depression and spleen deficiency syndrome[J]. Chin Gen Prac, 2020, 23(33):4214-4221. doi:10.12114/j.issn.1007-9572.2020.00.489. | |
[5] | 王军, 厉晶萍. 复方苦参注射液联合顺铂治疗肝癌并发血性腹水患者的临床观察[J]. 中西医结合肝病杂志, 2021, 31(1):44-46. |
WANG J, LI J P. Clinical observation on the treatment of the hepatoma bloody ascites by compound Kushen injection combined with cisplatin[J]. Chin J Inte Trad Western Med Liver Dis, 2021, 31(1):44-46. doi:10.3969/j.issn.1005-0264.2021.01.012. | |
[6] | 冯颖, 杨雪, 孙乐, 等. 扶正解毒消积方对二乙基亚硝胺诱导肝癌大鼠核受体共刺激因子5-信号传导与转录激活因子3信号通路的调控机制[J]. 中华中医药杂志, 2020, 35(7):3711-3714. |
FENG Y, YANG X, SUN L, et al. Regulatory effects of Fuzheng Jiedu Xiaoji Formula on the nuclear receptor coactivator 5-signal transducer and activator of transcription 3 signal pathway in rats with hepatocellular carcinoma induced by diethylnitrosamine[J]. Chin J Tradit Chin Med Pharm, 2020, 35(7):3711-3714. | |
[7] | TAMBE P K, MATHEW A J, BHARATI S. Cardioprotective potential of mitochondria-targeted antioxidant,mito-TEMPO,in 5-fluorouracil-induced cardiotoxicity[J]. Cancer Chemother Pharmacol, 2023, 91(5):389-400. doi:10.1007/s00280-023-04529-4. |
[8] | 陈路, 胡何节, 方征东, 等. 丹酚酸B通过JAK2/STAT3信号通路抑制大鼠胸主动脉瘤的机制研究[J]. 中药材, 2021, 44(8):1971-1975. |
CHEN L, HU H J, FANG Z D, et al. Mechanism of salvianolic acid B inhibiting thoracic aortic aneurysms in rats through JAK2/STAT3 signaling pathway[J]. J Chin Med Mat, 2021, 44(8):1971-1975. doi:10.13863/j.issn1001-4454.2021.08.036. | |
[9] | CARDONA-G W, HERRERA-R A, CASTRILLÓN-L W, et al. Chemistry and anticancer activity of hybrid molecules and derivatives based on 5-fluorouracil[J]. Curr Med Chem, 2021, 28(27):5551-5601. doi:10.2174/0929867328666210211164314. |
[10] | TEPERIKIDIS E, BOULMPOU A, CHARALAMPIDIS P, et al. 5-Fluorouracil,capecitabine and vasospasm:a scoping review of pathogenesis,management options and future research considerations[J]. Acta Cardiol, 2022, 77(1):1-13. doi:10.1080/00015385.2021.1873548. |
[11] | SUN Y, MA M, CAO D, et al. Inhibition of Fap promotes cardiac repair by stabilizing BNP[J]. Circ Res, 2023, 132(5):586-600. doi:10.1161/CIRCRESAHA.122.320781. |
[12] | HASSAN G M, EBRAHIM R H. The myokine decorin improves the cardiac function in a rat model of isoprenaline-induced myocardial infarction[J]. Can J Physiol Pharmacol, 2023, 101(6):286-293. doi:10.1139/cjpp-2022-0482. |
[13] | YANG B, ZHAO H, DONG R. MiR-449 improves cardiac function by regulating HDAC1 and cTnI[J]. Eur Rev Med Pharmacol Sci, 2020, 24(24):12827-12835. doi:10.26355/eurrev_202012_24184. |
[14] | REFAIE M M M, SHEHATA S, EL-HUSSIENY M, et al. Molecular mechanism of empagliflozin cardioprotection in 5-fluorouracil (5-FU)-induced cardiotoxicity via modulation of SGLT2 and TNFα/TLR/NF-κB signaling pathway in rats[J]. Toxicol Res, 2023, 40(1):139-151. doi: 10.1007/s43188-023-00204-1. |
[15] | 游蓉丽, 范慧君, 刘金峰, 等. 复方苦参注射液对放射性口腔黏膜炎的作用研究及机制推测[J]. 辽宁中医杂志, 2022, 49(5):213-216. |
YOU R L, FAN H J, LIU J F, et al. Effect of compound Kushen injection on radiation oral mucositis and mechanism speculation[J]. Liaoning J Trad Chin Med, 2022, 49(5):213-216. doi:10.13192/j.issn.1000-1719.2022.05.058. | |
[16] | 孟京红, 严力军, 李敏, 等. 苦参碱对角叉菜胶诱导的关节炎大鼠炎症反应及血小板中精氨酸酶和腺苷核苷酸水解酶活性的影响[J]. 中医学报, 2021, 36(4):817-823. |
MENG J H, YAN L J, LI M, et al. Effect of matrine on inflammatory response and activity of arginase and adenosine nucleotide hydrolase in plateletsin rats with carrageenan-induced arthritis[J]. China J Chin Med, 2021, 36(4):817-823. doi:10.16368/j.issn.1674-8999.2021.04.175. | |
[17] | LIANG H, XU P, XU G, et al. Histidine deficiency inhibits intestinal antioxidant capacity and induces intestinal endoplasmic-reticulum stress,inflammatory response,apoptosis,and necroptosis in largemouth bass (micropterus salmoides)[J]. Antioxidants (Basel), 2022, 11(12):2399. doi:10.3390/antiox11122399. |
[18] | JI Y, GE Y, XU X, et al. Vildagliptin reduces stenosis of injured carotid artery in diabetic mouse through inhibiting vascular smooth muscle cell proliferation via ER stress/NF-κB pathway[J]. Front Pharmacol, 2019,10:142. doi:10.3389/fphar.2019.00142. |
[19] | WANG W, DONG L, LV H, et al. Downregulating miRNA-199a-5p exacerbates fluorouracil-induced cardiotoxicity by activating the ATF6 signaling pathway[J]. Aging(Albany NY), 2024, 16(7):5916-5928. doi:10.18632/aging.205679. |
[20] | CHEN Y T, JHAO P Y, HUNG C T, et al. Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF-β signaling in kidney fibroblasts[J]. J Clin Invest, 2021, 131(5):e143645. doi:10.1172/JCI143645. |
[21] | SU S, WANG J, WANG J, et al. Cardioprotective effects of gypenoside XVII against ischemia/reperfusion injury:role of endoplasmic reticulum stress,autophagy,and mitochondrial fusion fission balance[J]. Phytother Res, 2022, 36(7):2982-2998. doi:10.1002/ptr.7493. |
[22] | 高鹏, 周凤蕊, 刘俊华, 等. 基于GRP78-ATF6-CHOP通路研究雷公藤多苷对坏死性小肠结肠炎新生大鼠的影响[J]. 中医学报, 2021, 36(4):801-806. |
GAO P, ZHOU F R, LIU J H, et al. Effects of tripterygium glycoside on the distribution of intestinal flora in neonatal rats with necrotizing enterocolitis and its mechanism based on GRP78-ATF6-CHOP pathway[J]. China J Chin Med, 2021, 36(4):801-806. doi:10.16368/j.issn.1674-8999.2021.04.172. | |
[23] | 易爱芬, 李文, 刘静莉. 艾迪注射液联合5-氟尿嘧啶对乙型肝炎相关性肝癌患者免疫功能的影响[J]. 癌症进展, 2022, 20(7):691-694. |
YI A F, LI W, LIU J L. Effect of aidi injection combined with 5-fluorouracil on immune function in patients with hepatitis B-associated liver cancer[J]. Oncol Prog, 2022, 20(7):691-694. doi:10.11877/j.issn.1672-1535.2022.20.07.12. | |
[24] | 姚华, 杜谢琴, 陈卓. 复方苦参注射液联合肝动脉化疗栓塞术治疗中晚期肝癌临床疗效及对免疫调控的影响[J]. 湖北中医药大学学报, 2021, 23(1):22-25. |
YAO H, DU X Q, CHEN Z. Clinical efficacy of Fangkushen Injection combined with hepatic artery chemoembolization and its effects on immune regulation of middle and advanced liver cancer[J]. J Hubei Univ Chin Med, 2021, 23(1):22-25. doi:10.3969/j.issn.1008-987x.2021.01.05. | |
[25] | 孙静, 赵荣华, 郭姗姗, 等. 苦参碱氯化钠注射液对人冠状病毒肺炎寒湿疫毒袭肺证小鼠病证结合模型的治疗作用[J]. 药学学报, 2020, 55(3):366-373. |
SUN J, ZHAO R H, GUO S S, et al. Effect of matrine sodium chloride injection on a mouse model combining disease with syndrome of human coronavirus pneumonia with cold-dampness pestilence attacking the lung[J]. Acta Pharmaceutica Sinica, 2020, 55(3):366-373. doi:10.16438/j.0513-4870.2020-0222. | |
[26] | ZHENG S, CHEN Y, WANG Z, et al. Combination of matrine and tacrolimus alleviates acute rejection in murine heart transplantation by inhibiting DCs maturation through ROS/ERK/NF-κB pathway[J]. Int Immunopharmacol, 2021, 101(Pt B):108218. doi:10.1016/j.intimp.2021.108218. |
[1] | 王远珍, 魏红艳, 常丽仙, 张映媛, 刘春云, 刘立. 原发性肝癌干预前并发肺部感染风险预测模型的建立与验证[J]. 天津医药, 2024, 52(9): 940-945. |
[2] | 钟敏, 施震, 周劲松, 李晋杰. GABA信号通路对脓毒症大鼠急性肺损伤内质网应激和线粒体自噬的影响[J]. 天津医药, 2024, 52(7): 733-737. |
[3] | 吴静, 范志娟, 刘树业. 慢性乙型肝炎发展为肝细胞癌过程中血浆游离氨基酸水平的变化及临床意义[J]. 天津医药, 2024, 52(7): 738-742. |
[4] | 王俊懿, 李宸, 吴昕岳, 丁心语, 万春晓. 早期运动干预对脑缺血大鼠脑神经髓鞘的影响及机制研究[J]. 天津医药, 2024, 52(6): 589-594. |
[5] | 刘小艳, 卜锐, 陆健斐, 丁昱, 张幸. 术前Sonazoid超声造影评估肝细胞癌病理分化程度的价值[J]. 天津医药, 2024, 52(6): 658-662. |
[6] | 吴倩, 王意, 陈念, 周凯, 田昕, 徐晖, 苟小霞. 诱导化疗对鼻咽癌患者免疫功能及炎症指标的影响[J]. 天津医药, 2024, 52(4): 397-402. |
[7] | 解有成, 王菲, 徐进, 于晓辉. SIRT1在糖尿病心肌病发病中的研究进展[J]. 天津医药, 2024, 52(4): 443-448. |
[8] | 杨文珊, 盛玉, 陈秀利, 陈吉. 小儿急性胰腺炎序贯化营养支持与肠外营养支持的疗效比较[J]. 天津医药, 2024, 52(10): 1061-1064. |
[9] | 周梦竹, 张海凤, 张雪, 张跃, 程立君, 刘彤, 刘长乐. NLRP3-CAMKⅡ-IRE-1α通路激活诱导氧化应激增强对糖尿病大鼠心室重构的影响[J]. 天津医药, 2023, 51(6): 580-585. |
[10] | 黄承军, 徐宇, 秘乐, 王秀军, 刘振峰, 王红嫚. 细胞自噬在急性呼吸窘迫综合征中的研究进展[J]. 天津医药, 2023, 51(6): 668-672. |
[11] | 莫少娥, 刘可鹏, 傅文, 谢酬勤, 郁冬玲, 陈实, 蓝雨雁. Sigma-1受体在神经病理性疼痛大鼠内质网应激中的作用[J]. 天津医药, 2023, 51(4): 366-370. |
[12] | 吴琼, 李锦源, 黄文涛, 安娜. 金合欢素对肝癌HepG2细胞增殖、凋亡和迁移的影响及机制研究[J]. 天津医药, 2023, 51(3): 235-239. |
[13] | 唐豪言, 潘正龙, 刘小方. TP53基因单核苷酸多态性与原发性肝细胞癌预后的关系[J]. 天津医药, 2023, 51(11): 1249-1254. |
[14] | 吕康宁, 王蕾, 秦松, 王莉△. C-藻蓝蛋白对肝脏损伤的保护作用及机制研究进展[J]. 天津医药, 2022, 50(6): 668-672. |
[15] | 谭玉莹, 张炜琪, 谢炎, 李江, 李俊杰, 蒋文涛△. 肝细胞癌微血管侵犯相关危险因素分析及预测模型的构建#br#[J]. 天津医药, 2022, 50(5): 523-527. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||