[1] |
SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas:Global,regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183:109119. doi:10.1016/j.diabres.2021.109119.
|
[2] |
American Diabetes Association Professional Practice Committee. Cardiovascular disease and risk management:standards of medical care in diabetes-2022[J]. Diabetes Care, 2022, 45(Suppl 1):S144-S174. doi:10.2337/dc22-S010.
|
[3] |
PAN K L, HSU Y C, CHANG S T, et al. The role of cardiac fibrosis in diabetic cardiomyopathy:from pathophysiology to clinical diagnostic tools[J]. Int J Mol Sci, 2023, 24(10):8604. doi:10.3390/ijms24108604.
|
[4] |
COSTANTINO S, MENGOZZI A, VELAGAPUDI S, et al. Treatment with recombinant Sirt1 rewires the cardiac lipidome and rescues diabetes-related metabolic cardiomyopathy[J]. Cardiovasc Diabetol, 2023, 22(1):312. doi:10.1186/s12933-023-02057-2.
|
[5] |
SUN C, LIANG H, ZHAO Y, et al. Jingfang Granules improve glucose metabolism disturbance and inflammation in mice with urticaria by up-regulating LKB1/AMPK/SIRT1 axis[J]. J Ethnopharmacol, 2023, 302(Pt A):115913. doi:10.1016/j.jep.2022.115913.
|
[6] |
YANCY C W, JESSUP M, BOZKURT B, et al. 2013 ACCF/AHA guideline for the management of heart failure:a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines[J]. J Am Coll Cardiol, 2013, 62(16):e147-e239. doi:10.1016/j.jacc.2013.05.019.
|
[7] |
MAISCH B, ALTER P, PANKUWEIT S. Diabetic cardiomyopathy--fact or fiction?[J]. Herz, 2011, 36(2):102-115. doi:10.1007/s00059-011-3429-4.
|
[8] |
WANG A J, WANG S, WANG B J, et al. Epigenetic regulation associated with sirtuin 1 in complications of diabetes mellitus[J]. Front Endocrinol(Lausanne), 2021, 11:598012. doi:10.3389/fendo.2020.598012.
|
[9] |
FANG W J, LI X M, ZHOU X K, et al. Resveratrol improves diabetic cardiomyopathy by preventing asymmetric dimethylarginine-caused peroxisome proliferator-activated receptor-γ coactivator-1α acetylation[J]. Eur J Pharmacol, 2022, 936:175342. doi:10.1016/j.ejphar.2022.175342.
|
[10] |
WALDMAN M, COHEN K, YADIN D, et al. Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving 'SIRT1 and PGC-1α'[J]. Cardiovasc Diabetol, 2018, 17(1):111. doi:10.1186/s12933-018-0754-4.
|
[11] |
DU S, SHI H, XIONG L, et al. Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy[J]. Front Endocrinol(Lausanne), 2022, 13:1011669. doi:10.3389/fendo.2022.1011669.
|
[12] |
DAIBER A, STEVEN S, VUJACIC-MIRSKI K, et al. Regulation of vascular function and inflammation via cross talk of reactive oxygen and nitrogen species from mitochondria or NADPH oxidase-implications for diabetes progression[J]. Int J Mol Sci, 2020: 21(10):3405. doi:10.3390/ijms21103405.
|
[13] |
ZHANG W, CHEN R, XU K, et al. Protective effect of Xinmai'an tablets via mediation of the AMPK/SIRT1/PGC-1α signaling pathway on myocardial ischemia-reperfusion injury in rats[J]. Phytomedicine, 2023, 120:155034. doi:10.1016/j.phymed.2023.155034.
|
[14] |
LI K, ZHAI M, JIANG L, et al. Tetrahydrocurcumin ameliorates diabetic cardiomyopathy by attenuating high glucose-induced oxidative stress and fibrosis via activating the SIRT1 pathway[J]. Oxid Med Cell Longev, 2019: 2019:6746907. doi:10.1155/2019/6746907.
|
[15] |
DUAN J, YIN Y, WEI G, et al. Chikusetsu saponin IVa confers cardioprotection via SIRT1/ERK1/2 and Homer1a pathway[J]. Sci Rep, 2015, 5:18123. doi:10.1038/srep18123.
|
[16] |
DATTA S, JAISWAL M. Mitochondrial calcium at the synapse[J]. Mitochondrion, 2021, 59:135-153. doi:10.1016/j.mito.2021.04.006.
|
[17] |
DIAZ-JUAREZ J, SUAREZ J, CIVIDINI F, et al. Expression of the mitochondrial calcium uniporter in cardiac myocytes improves impaired mitochondrial calcium handling and metabolism in simulated hyperglycemia[J]. Am J Physiol Cell Physiol, 2016, 311(6):C1005-C1013. doi:10.1152/ajpcell.00236.2016.
|
[18] |
SUAREZ J, CIVIDINI F, SCOTT B T, et al. Restoring mitochondrial calcium uniporter expression in diabetic mouse heart improves mitochondrial calcium handling and cardiac function[J]. J Biol Chem, 2018, 293(21):8182-8195. doi:10.1074/jbc.RA118.002066.
|
[19] |
DIA M, GOMEZ L, THIBAULT H, et al. Reduced reticulum-mitochondria Ca2+ transfer is an early and reversible trigger of mitochondrial dysfunctions in diabetic cardiomyopathy[J]. Basic Res Cardiol, 2020, 115(6):74. doi:10.1007/s00395-020-00835-7.
|
[20] |
GORSKI P A, JANG S P, JEONG D, et al. Role of SIRT1 in modulating acetylation of the sarco-endoplasmic reticulum Ca2+-ATPase in heart failure[J]. Circ Res, 2019, 124(9):e63-e80. doi:10.1161/CIRCRESAHA.118.313865.
|
[21] |
VILELLA R, IZZO S, NAPONELLI V, et al. In vivo treatment with a standardized green tea extract restores cardiomyocyte contractility in diabetic rats by improving mitochondrial function through SIRT1 activation[J]. Pharmaceuticals(Basel), 2022, 15(11):1337. doi:10.3390/ph15111337.
|
[22] |
HUANG Q, LIU Z, YANG Y, et al. Selenium nanodots(SENDs)as antioxidants and antioxidant-prodrugs to rescue islet β cells in type 2 diabetes mellitus by restoring mitophagy and alleviating endoplasmic reticulum stress[J]. Adv Sci (Weinh), 2023, 10(19):e2300880. doi:10.1002/advs.202300880.
|
[23] |
AL KURY L T. Calcium homeostasis in ventricular myocytes of diabetic cardiomyopathy[J]. J Diabetes Res, 2020, 2020:1942086. doi:10.1155/2020/1942086.
|
[24] |
YANG S, WU M, LI X, et al. Role of endoplasmic reticulum stress in atherosclerosis and its potential as a therapeutic target[J]. Oxid Med Cell Longev, 2020, 2020:9270107. doi:10.1155/2020/9270107.
|
[25] |
MA S, FENG J, ZHANG R, et al. SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice[J]. Oxid Med Cell Longev, 2017, 2017:4602715. doi:10.1155/2017/4602715.
|
[26] |
PROLA A, PIRES DA SILVA J, GUILBERT A, et al. SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation[J]. Cell Death Differ, 2017, 24(2):343-356. doi:10.1038/cdd.2016.138.
|
[27] |
REN F F, XIE Z Y, JIANG Y N, et al. Dapagliflozin attenuates pressure overload-induced myocardial remodeling in mice via activating SIRT1 and inhibiting endoplasmic reticulum stress[J]. Acta Pharmacol Sin, 2022, 43(7):1721-1732. doi:10.1038/s41401-021-00805-2.
|
[28] |
JIA G, DEMARCO V G, SOWERS J R. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy[J]. Nat Rev Endocrinol, 2016, 12(3):144-153. doi:10.1038/nrendo.2015.216.
|
[29] |
PANES J D, GODOY P A, SILVA-GRECCHI T, et al. Changes in PGC-1α/SIRT1 signaling impact on mitochondrial homeostasis in amyloid-beta peptide toxicity model[J]. Front Pharmacol, 2020, 11:709. doi:10.3389/fphar.2020.00709.
|
[30] |
DIAO J, ZHAO H, YOU P, et al. Rosmarinic acid ameliorated cardiac dysfunction and mitochondrial injury in diabetic cardiomyopathy mice via activation of the SIRT1/PGC-1α pathway[J]. Biochem Biophys Res Commun, 2021, 546:29-34. doi:10.1016/j.bbrc.2021.01.086.
|
[31] |
DING M, FENG N, TANG D, et al. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway[J]. J Pineal Res, 2018, 65(2):e12491. doi:10.1111/jpi.12491.
|
[32] |
GRUBIĆ ROTKVIĆ P, PLANINIĆ Z, LIBERATI PRŠO A M, et al. The mystery of diabetic cardiomyopathy:from early concepts and underlying mechanisms to novel therapeutic possibilities[J]. Int J Mol Sci, 2021, 22(11):5973. doi:10.3390/ijms22115973.
|
[33] |
SHEN J Z, YOUNG M J. Corticosteroids,heart failure,and hypertension:a role for immune cells?[J]. Endocrinology, 2012, 153(12):5692-5700. doi:10.1210/en.2012-1780.
|
[34] |
WAHBA N S, GHAREIB S A, ABDEL-GHANY R H, et al. Vitamin D3 potentiates the nephroprotective effects of metformin in a rat model of metabolic syndrome:role of AMPK/SIRT1 activation and DPP-4 inhibition[J]. Can J Physiol Pharmacol, 2021, 99(6):685-697. doi:10.1139/cjpp-2020-0435.
|
[35] |
WEN J, ZHANG L, WANG J, et al. Therapeutic effects of higenamine combined with [6]-gingerol on chronic heart failure induced by doxorubicin via ameliorating mitochondrial function[J]. J Cell Mol Med, 2020, 24(7):4036-4050. doi:10.1111/jcmm.15041.
|
[36] |
JIN Q, ZHU Q, WANG K, et al. Allisartan isoproxil attenuates oxidative stress and inflammation through the SIRT1/Nrf2/NF-κB signalling pathway in diabetic cardiomyopathy rats[J]. Mol Med Rep, 2021, 23(3):215. doi:10.3892/mmr.2021.11854.
|
[37] |
WEN Y, GENG L, ZHOU L, et al. Betulin alleviates on myocardial inflammation in diabetes mice via regulating Siti1/NLRP3/NF-κB pathways[J]. Int Immunopharmacol, 2020, 85:106653. doi:10.1016/j.intimp.2020.106653.
|
[38] |
REN B C, ZHANG Y F, LIU S S, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways[J]. J Cell Mol Med, 2020, 24(21):12355-12367. doi:10.1111/jcmm.15725.
|
[39] |
MA W, GUO W, SHANG F, et al. Bakuchiol alleviates hyperglycemia-induced diabetic cardiomyopathy by reducing myocardial oxidative stress via activating the SIRT1/Nrf2 signaling pathway[J]. Oxid Med Cell Longev, 2020, 2020:3732718. doi:10.1155/2020/3732718.
|
[40] |
ALBASHER G, ALKAHTANI S, AL-HARBI L N. Urolithin A prevents streptozotocin-induced diabetic cardiomyopathy in rats by activating SIRT1[J]. Saudi J Biol Sci, 2022, 29(2):1210-1220. doi:10.1016/j.sjbs.2021.09.045.
|