[1] |
KIMURA Y, YAMAGUCHI S, SUZUKI T, et al. Switching from pregabalin to mirogabalin in patients with peripheral neuropathic pain:a multi-center,prospective,single-arm,open-label study (MIROP Study)[J]. Pain Ther, 2021, 10(1):711-727. doi:10.1007/s40122-021-00255-y.
|
[2] |
KNEZEVIC N N, JOVANOVIC F, CANDIDO K D, et al. Oral pharmacotherapeutics for the management of peripheral neuropathic pain conditions-a review of clinical trials[J]. Expert Opin Pharmacother, 2020, 21(18):2231-2248. doi:10.1080/14656566.2020.1801635.
|
[3] |
张昆龙, 薛白洁, 肖玮, 等. 重复经颅磁刺激对神经病理性疼痛患者疼痛和情绪的影响[J]. 中国现代神经疾病杂志, 2022, 22(11):940-947.
|
|
ZHANG K L, XUE B J, XIAO W, et al. Effects of repetitive transcranial magnetic stimulation on pain and emotion of patients with neuropathic pain[J]. Chinese Journal of Contemporary Neurology and Neurosurgery, 2022, 22(11):940-947. doi:10.3969/j.issn.1672-6731.2022.11.005.
|
[4] |
KARAVIS M Y, SIAFAKA I, VADALOUCA A, et al. Role of microglia in neuropathic pain[J]. Cureus, 2023, 15(8):e43555. doi:10.7759/cureus.43555.
|
[5] |
JI A, XU J. Neuropathic pain:biomolecular intervention and imaging via targeting microglia activation[J]. Biomolecules, 2021, 11(9):1343. doi:10.3390/biom11091343.
|
[6] |
ZHANG L Q, GAO S J, SUN J, et al. DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation[J]. J Neuroinflammation, 2022, 19(1):129. doi:10.1186/s12974-022-02495-x.
|
[7] |
DERRY S, BELL R F, STRAUBE S, et al. Pregabalin for neuropathic pain in adults[J]. Cochrane Database Syst Rev, 2019, 1(1):CD007076. doi:10.1002/14651858.CD007076.pub3.
|
[8] |
LI S, FENG X, BIAN H. Optogenetics:emerging strategies for neuropathic pain treatment[J]. Front Neurol, 2022,13:982223. doi:10.3389/fneur.2022.982223.
|
[9] |
JIANG J, XU L, YANG L, et al. Mitochondrial-derived peptide MOTS-c ameliorates spared nerve injury-induced neuropathic pain in mice by inhibiting microglia activation and neuronal oxidative damage in the spinal cord via the AMPK pathway[J]. ACS Chem Neurosci, 2023, 14(12):2362-2374. doi:10.1021/acschemneuro.3c00140.
|
[10] |
FINNERUP N B, KUNER R, JENSEN T S. Neuropathic pain:from mechanisms to treatment[J]. Physiol Rev, 2021, 101(1):259-301. doi:10.1152/physrev.00045.2019.
|
[11] |
GHAZISAEIDI S, MULEY M M, SALTER M W. Neuropathic pain:mechanisms,sex differences,and potential therapies for a global problem[J]. Annu Rev Pharmacol Toxicol, 2023,63:565-583. doi:10.1146/annurev-pharmtox-051421-112259.
|
[12] |
GUO X, GENG X, CHU Y, et al. MiR-204-5p alleviates neuropathic pain by targeting BRD4 in a rat chronic constrictive injury model[J]. J Pain Res, 2022, 15:2427-2435. doi:10.2147/JPR.S371616.
|
[13] |
HANSEN J N, BRÜCKNER M, PIETROWSKI M J, et al. MotiQ:an open-source toolbox to quantify the cell motility and morphology of microglia[J]. Mol Biol Cell, 2022, 33(11):ar99. doi:10.1091/mbc.E21-11-0585.
|
[14] |
BRUZELIUS A, HIDALGO I, BOZA-SERRANO A, et al. The human bone marrow harbors a CD45(-) CD11B(+) cell progenitor permitting rapid microglia-like cell derivative approaches[J]. Stem Cells Transl Med, 2021, 10(4):582-597. doi:10.1002/sctm.20-0127.
|
[15] |
HATTORI Y. The microglia-blood vessel interactions in the developing brain[J]. Neurosci Res, 2023, 187:58-66. doi:10.1016/j.neures.2022.09.006.
|
[16] |
VIDAL-ITRIAGO A, RADFORD R, ARAMIDEH J A, et al. Microglia morphophysiological diversity and its implications for the CNS[J]. Front Immunol, 2022,13:997786. doi:10.3389/fimmu.2022.997786.
|
[17] |
HU X, DU L, LIU S, et al. A TRPV4-dependent neuroimmune axis in the spinal cord promotes neuropathic pain[J]. J Clin Invest, 2023, 133(5):e161507. doi:10.1172/JCI161507.
|
[18] |
MUKHERJEE L, SAGAR M, OUELLETTE J N, et al. A deep learning framework for classifying microglia activation state using morphology and intrinsic fluorescence lifetime data[J]. Front Neuroinform, 2022,16:1040008. doi:10.3389/fninf.2022.1040008.
|
[19] |
MAGUIRE E, CONNOR-ROBSON N, SHAW B, et al. Assaying microglia functions in vitro[J]. Cells, 2022, 11(21):3414. doi:10.3390/cells11213414.
|
[20] |
CHIDAMBARAM H, DESALE S E, QURESHI T, et al. Microglial uptake of extracellular tau by actin-mediated phagocytosis[J]. Methods Mol Biol, 2024,2761:231-243. doi:10.1007/978-1-0716-3662-6_16.
|
[21] |
ZHAO X, SUN J, XIONG L, et al. β-amyloid binds to microglia Dectin-1 to induce inflammatory response in the pathogenesis of Alzheimer's disease[J]. Int J Biol Sci, 2023, 19(10):3249-3265. doi:10.7150/ijbs.81900.
|
[22] |
QIU T, GUO J, WANG L, et al. Dynamic microglial activation is associated with LPS-induced depressive-like behavior in mice:an [18F] DPA-714 PET imaging study[J]. Bosn J Basic Med Sci, 2022, 22(4):649-659. doi:10.17305/bjbms.2021.6825.
|
[23] |
YU Z, PANG H, YANG Y, et al. Microglia dysfunction drives disrupted hippocampal amplitude of low frequency after acute kidney injury[J]. CNS Neurosci Ther, 2024, 30(2):e14363. doi:10.1111/cns.14363.
|
[24] |
LU R, ZHANG L, WANG H, et al. Echinacoside exerts antidepressant-like effects through enhancing BDNF-CREB pathway and inhibiting neuroinflammation via regulating microglia M1/M2 polarization and JAK1/STAT3 pathway[J]. Front Pharmacol, 2022,13:993483. doi:10.3389/fphar.2022.993483.
|
[25] |
WANG J, HE W, ZHANG J. A richer and more diverse future for microglia phenotypes[J]. Heliyon, 2023, 9(4):e14713. doi:10.1016/j.heliyon.2023.e14713.
|
[26] |
AU N, MA C. Neuroinflammation,microglia and implications for retinal ganglion cell survival and axon regeneration in traumatic optic neuropathy[J]. Front Immunol, 2022,13:860070. doi:10.3389/fimmu.2022.860070.
|
[27] |
LIU X, MA J, DING G, et al. Microglia polarization from M1 toward M2 phenotype is promoted by astragalus polysaccharides mediated through inhibition of miR-155 in experimental autoimmune encephalomyelitis[J]. Oxid Med Cell Longev, 2021,2021:5753452. doi:10.1155/2021/5753452.
|
[28] |
HSU C H, PAN Y J, ZHENG Y T, et al. Ultrasound reduces inflammation by modulating M1/M2 polarization of microglia through STAT1/STAT6/PPARγ signaling pathways[J]. CNS Neurosci Ther, 2023, 29(12):4113-4123. doi:10.1111/cns.14333.
|
[29] |
WANG X L, CHEN F, SHI H, et al. Oxymatrine inhibits neuroinflammation byregulating M1/M2 polarization in N9 microglia through the TLR4/NF-κB pathway[J]. Int Immunopharmacol, 2021,100:108139. doi:10.1016/j.intimp.2021.108139.
|
[30] |
YOU S, MA Z, ZHANG P, et al. Neuroprotective effects of the salidroside derivative SHPL-49 via the BDNF/TrkB/Gap43 pathway in rats with cerebral ischemia[J]. Biomed Pharmacother, 2024,174:116460. doi:10.1016/j.biopha.2024.116460.
|
[31] |
张赟, 李珂, 补王珍. 电针调控Nrf2/HO-1通路对缺血缺氧性脑损伤大鼠小胶质细胞活化的影响[J]. 天津医药, 2023, 51(2):149-154.
|
|
ZHANG Y, LI K, BU W Z. Effect of electroacupuncture on the activation of microglia in rats with hypoxia-ischemia brain damage by regulating Nrf2/HO-1 pathway[J]. Tianjin Med J, 2023, 51(2):149-154. doi:10.11958/20220792.
|
[32] |
XIE L, LIU Y, ZHANG N, et al. Electroacupuncture improves M2 microglia polarization and glia anti-inflammation of hippocampus in Alzheimer's disease[J]. Front Neurosci, 2021,15:689629. doi:10.3389/fnins.2021.689629.
|
[33] |
刘莹, 王文丽, 张国鑫, 等. 双氢青蒿素和普瑞巴林联用对神经病理性疼痛小鼠的干预作用及炎症调控机制[J]. 中国中药杂志, 2024, 49(6):1570-1578.
|
|
LIU Y, WANG W L, ZHANG G X, et al. Interventional effects and inflammatory regulatory mechanisms of dihydroartemisinin and pregabalin combination in mice with neuropathic pain[J]. Chinese Journal of Traditional Chinese Medicine, 2024, 49(6):1570-1578. doi:10.19540/j.cnki.cjcmm.20231114.703.
|
[34] |
LUO D, LI X, TANG S, et al. Epigenetic modifications in neuropathic pain[J]. Mol Pain, 2021,17:17448069211056767. doi:10.1177/17448069211056767.
|
[35] |
WU Q, ZHENG Y, YU J, et al. Electroacupuncture alleviates neuropathic pain caused by SNL by promoting M2 microglia polarization through PD-L1[J]. Int Immunopharmacol, 2023,123:110764. doi:10.1016/j.intimp.2023.110764.
|
[36] |
LI X, SHI H, ZHANG D, et al. Paeonol alleviates neuropathic pain by modulating microglial M1 and M2 polarization via the RhoA/p38MAPK signaling pathway[J]. CNS Neurosci Ther, 2023, 29(9):2666-2679. doi:10.1111/cns.14211.
|
[37] |
TAN M, FENG Z, CHEN H, et al. Transcranial direct current stimulation regulates phenotypic transformation of microglia to relieve neuropathic pain induced by spinal cord injury[J]. Front Behav Neurosci, 2023,17:1147693. doi:10.3389/fnbeh.2023.1147693.
|
[38] |
JIN G L, HONG L M, LIU H P, et al. Koumine modulates spinal microglial M1 polarization and the inflammatory response through the Notch-RBP-Jκ signaling pathway,ameliorating diabetic neuropathic pain in rats[J]. Phytomedicine, 2021,90:153640. doi:10.1016/j.phymed.2021.153640.
|
[39] |
JIN J, GUO J, CAI H, et al. M2-Like Microglia polarization attenuates neuropathic pain associated with Alzheimer's disease[J]. J Alzheimers Dis, 2020, 76(4):1255-1265. doi:10.3233/JAD-200099.
|
[40] |
孟灵, 杨松, 钟青华, 等. 电针颈夹脊穴对神经根型颈椎病模型大鼠小胶质细胞、P38丝裂原活化蛋白激酶和炎性因子表达的影响[J]. 针灸临床杂志, 2023, 39(1):82-89.
|
|
MENG L, YANG S, ZHONG Q H, et al. Effects of electro-needling cervical jiaji points on expressions of microglia,P38-MAPK and inflammatory cytokines in rats with CSR[J]. Journal of Clinical Acupuncture and Moxibustion, 2023, 39(1):82-89. doi:10.19917/j.cnki.1005-0779.023015.
|