[1] |
ZALEWSKI J, NOWAK K, FURCZYNSKA P, et al. Complicating acute myocardial infarction. current status and unresolved targets for subsequent research[J]. J Clin Med, 2021, 10(24):5904. doi: 10.3390/jcm10245904.
|
[2] |
CHOI D, HWANG K C, LEE K Y, et al. Ischemic heart diseases:current treatments and future[J]. J Control Release, 2009, 140(3):194-202. doi: 10.1016/j.jconrel.2009.06.016.
|
[3] |
LEE J H, SEO S J. Biomedical application of dental tissue-derived induced pluripotent stem cells[J]. Stem Cells Int, 2016, 2016:9762465. doi: 10.1155/2016/9762465.
|
[4] |
MAO A S, MOONEY D J. Regenerative medicine:Current therapies and future directions[J]. Proc Natl Acad Sci U S A, 2015, 112(47):14452-14459. doi: 10.1073/pnas.1508520112.
|
[5] |
SANGANALMATH S K, BOLLI R. Cell therapy for heart failure:a comprehensive overview of experimental and clinical studies,current challenges,and future directions[J]. Circ Res, 2013, 113(6):810-834. doi: 10.1161/CIRCRESAHA.113.300219.
|
[6] |
TAN X, DAI Q, GUO T, et al. Efficient generation of transgene- and feeder-free induced pluripotent stem cells from human dental mesenchymal stem cells and their chemically defined differentiation into cardiomyocytes[J]. Biochem Biophys Res Commun, 2018, 495(4):2490-2497. doi: 10.1016/j.bbrc.2017.12.007.
|
[7] |
CHALISSERRY E P, NAM S Y, PARK S H, et al. Therapeutic potential of dental stem cells[J]. J Tissue Eng, 2017, 8:2041731417702531. doi: 10.1177/2041731417702531.
|
[8] |
CAMBRIA E, PASQUALINI F S, WOLINT P, et al. Translational cardiac stem cell therapy:advancing from first-generation to next-generation cell types[J]. NPJ Regen Med, 2017, 2:17. doi: 10.1038/s41536-017-0024-1.
|
[9] |
KANELIDIS A J, PREMER C, LOPEZ J, et al. Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction:a meta-analysis of preclinical studies and clinical trials[J]. Circ Res, 2017, 120(7):1139-1150. doi: 10.1161/CIRCRESAHA.116.309819.
|
[10] |
MENASCHÉ P, VANNEAUX V, HAGÈGE A, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment:First clinical case report[J]. Eur Heart J, 2015, 36(30):2011-2017. doi: 10.1093/eurheartj/ehv189.
|
[11] |
FUNAKOSHI S, MIKI K, TAKAKI T, et al. Enhanced engraftment,proliferation,and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes[J]. Sci Rep, 2016, 6:19111. doi: 10.1038/srep19111.
|
[12] |
JIANG X, YANG Z, DONG M. Cardiac repair in a murine model of myocardial infarction with human induced pluripotent stem cell-derived cardiomyocytes[J]. Stem Cell Res Ther, 2020, 11(1):297. doi: 10.1186/s13287-020-01811-7.
|
[13] |
SHIBA Y, GOMIBUCHI T, SETO T, et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts[J]. Nature, 2016, 538(7625):388-391. doi: 10.1038/nature19815.
|
[14] |
BUJA L M. Cardiac repair and the putative role of stem cells[J]. J Mol Cell Cardiol, 2019, 128:96-104. doi: 10.1016/j.yjmcc.2019. 01.022.
|
[15] |
YE L, CHANG Y H, XIONG Q, et al. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells[J]. Cell Stem Cell, 2014, 15(6):750-761. doi: 10.1016/j.stem.2014.11.009.
|
[16] |
LI H, YU B, YANG P, et al. Injectable AuNP-HA matrix with localized stiffness enhances the formation of gap junction in engrafted human induced pluripotent stem cell-derived cardiomyocytes and promotes cardiac repair[J]. Biomaterials, 2021, 279:121231. doi: 10.1016/j.biomaterials.2021.121231.
|
[17] |
KOZANITI F K, METSIOU D N, MANARA A E, et al. Recent advancements in 3D printing and bioprinting methods for cardiovascular tissue engineering[J]. Bioengineering (Basel), 2021, 8(10):133. doi: 10.3390/bioengineering8100133.
|