Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (6): 601-606.doi: 10.11958/20222017
• Experimental Research • Previous Articles Next Articles
LIU Dezhao(), LUO Xiaozhi, HUANG Feng
Received:
2022-12-08
Revised:
2023-01-09
Published:
2023-06-15
Online:
2023-06-20
Contact:
△E-mail:LIU Dezhao, LUO Xiaozhi, HUANG Feng. Mechanism of action of EV-YF1 based on artificially synthesized Y RNA fragments from extracellular vesicles of cardiosphere-derived cells on improving myocardial ischemia-reperfusion injury in mice[J]. Tianjin Medical Journal, 2023, 51(6): 601-606.
CLC Number:
基因名称 | 引物序列(5'→3') | 产物大小 (bp) |
---|---|---|
IL-1β | 上游:GAAGAAGAGCCCATCCTCTGT 下游:TGTTCACGGAGCCTGTAG | 129 |
IL-6 | 上游:ACACTCTTCACACCCCTCTCCTTC 下游:GACCCTCACTCCTTCCCTTCTATCC | 122 |
TNF-α | 上游:CACCACGCTCTTCTGTCTACTGAAC 下游:CCATTAGCCCACTTCTTTCCCTCAC | 147 |
GAPDH | 上游:TGAGCAAGAGAGGCCCTATC 下游:AGGCCCCTCCTGTTATTATG | 101 |
Tab.1 Primer sequences for qPCR
基因名称 | 引物序列(5'→3') | 产物大小 (bp) |
---|---|---|
IL-1β | 上游:GAAGAAGAGCCCATCCTCTGT 下游:TGTTCACGGAGCCTGTAG | 129 |
IL-6 | 上游:ACACTCTTCACACCCCTCTCCTTC 下游:GACCCTCACTCCTTCCCTTCTATCC | 122 |
TNF-α | 上游:CACCACGCTCTTCTGTCTACTGAAC 下游:CCATTAGCCCACTTCTTTCCCTCAC | 147 |
GAPDH | 上游:TGAGCAAGAGAGGCCCTATC 下游:AGGCCCCTCCTGTTATTATG | 101 |
组别 | 梗死面积比值 | 危险区域比值 |
---|---|---|
Sham组 | 2.89±0.38 | 56.92±1.35 |
MIRI组 | 48.48±1.21a | 57.42±1.44 |
EV-YF1组 | 33.86±0.86ab | 58.59±0.67 |
F | 693.900** | 0.508 |
Tab.2 Comparison of infarct area ratio and risk area ratio after MIRI between the three groups of mice
组别 | 梗死面积比值 | 危险区域比值 |
---|---|---|
Sham组 | 2.89±0.38 | 56.92±1.35 |
MIRI组 | 48.48±1.21a | 57.42±1.44 |
EV-YF1组 | 33.86±0.86ab | 58.59±0.67 |
F | 693.900** | 0.508 |
组别 | IL-1β | IL-6 | TNF-α |
---|---|---|---|
Sham组 | 86.2±5.9 | 257.7±25.9 | 235.5±19.4 |
MIRI组 | 482.3±35.8a | 753.7±31.5a | 815.6±28.1a |
EV-YF1组 | 350.1±21.0ab | 494.8±25.8ab | 516.7±34.4ab |
F | 69.480** | 79.230** | 107.600** |
Tab.3 Comparison of inflammatory factors in peripheral blood between the three groups of mice
组别 | IL-1β | IL-6 | TNF-α |
---|---|---|---|
Sham组 | 86.2±5.9 | 257.7±25.9 | 235.5±19.4 |
MIRI组 | 482.3±35.8a | 753.7±31.5a | 815.6±28.1a |
EV-YF1组 | 350.1±21.0ab | 494.8±25.8ab | 516.7±34.4ab |
F | 69.480** | 79.230** | 107.600** |
组别 | IL-1β | IL-6 | TNF-α |
---|---|---|---|
Sham组 | 1.00±0.08 | 1.00±0.13 | 1.00±0.26 |
MIRI组 | 8.98±0.42a | 2.43±0.01a | 3.93±0.45a |
EV-YF1组 | 2.29±0.31ab | 1.39±0.04ab | 1.56±0.22ab |
F | 197.900** | 56.190** | 22.630** |
Tab.4 Comparison of mRNA expression levels of IL-1β, IL-6 and TNF-α in myocardial tissue between the three groups of mice
组别 | IL-1β | IL-6 | TNF-α |
---|---|---|---|
Sham组 | 1.00±0.08 | 1.00±0.13 | 1.00±0.26 |
MIRI组 | 8.98±0.42a | 2.43±0.01a | 3.93±0.45a |
EV-YF1组 | 2.29±0.31ab | 1.39±0.04ab | 1.56±0.22ab |
F | 197.900** | 56.190** | 22.630** |
组别 | Bcl-2 | Bax | Caspase-3 |
---|---|---|---|
Sham组 | 0.360±0.034 | 0.905±0.059 | 0.248±0.028 |
MIRI组 | 0.720±0.034a | 1.542±0.125a | 0.899±0.085a |
EV-YF1组 | 2.757±0.209ab | 1.054±0.144ab | 0.648±0.078ab |
F | 109.600** | 8.379** | 23.060** |
Tab.5 Comparison of relative expression of apoptosis-related proteins in myocardial tissue between the three groups of mice
组别 | Bcl-2 | Bax | Caspase-3 |
---|---|---|---|
Sham组 | 0.360±0.034 | 0.905±0.059 | 0.248±0.028 |
MIRI组 | 0.720±0.034a | 1.542±0.125a | 0.899±0.085a |
EV-YF1组 | 2.757±0.209ab | 1.054±0.144ab | 0.648±0.078ab |
F | 109.600** | 8.379** | 23.060** |
[1] | HEUSCH G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective[J]. Nat Rev Cardiol, 2020, 17(12):773-789. doi:10.1038/s41569-020-0403-y. |
[2] | HE J, LIU D, ZHAO L, et al. Myocardial ischemia/reperfusion injury:Mechanisms of injury and implications for management(Review)[J]. Exp Ther Med, 2022, 23(6):430. doi:10.3892/etm.2022.11357. |
[3] | BILLMEIER M, GREEN D, HALL A E, et al. Mechanistic insights into non-coding Y RNA processing[J]. RNA Biol, 2022, 19(1):468-480. doi:10.1080/15476286.2022.2057725. |
[4] | SIM S, HUGHES K, CHEN X, et al. The bacterial Ro60 protein and its noncoding Y RNA regulators[J]. Annu Rev Microbiol, 2020, 74:387-407. doi:10.1146/annurev-micro-020620-062812. |
[5] | GALLET R, DAWKINS J, VALLE J, et al. Exosomes secreted by cardiosphere-derived cells reduce scarring,attenuate adverse remodelling,and improve function in acute and chronic porcine myocardial infarction[J]. Eur Heart J, 2017, 38(3):201-211. doi:10.1093/eurheartj/ehw240. |
[6] | BARILE L, MOCCETTI T, MARBÁN E, et al. Roles of exosomes in cardioprotection[J]. Eur Heart J, 2017, 38(18):1372-1379. doi:10.1093/eurheartj/ehw304. |
[7] | CAMBIER L, DE COUTO G, IBRAHIM A, et al. Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion[J]. EMBO Mol Med, 2017, 9(3):337-352. doi:10.15252/emmm.201606924. |
[8] | HUANG F, NA N, IJICHI T, et al. Exosomally derived Y RNA fragment alleviates hypertrophic cardiomyopathy in transgenic mice[J]. Mol Ther Nucleic Acids, 2021, 24:951-960. doi:10.1016/j.omtn.2021.04.014. |
[9] | ALGOET M, JANSSENS S, HIMMELREICH U, et al. Myocardial ischemia-reperfusion injury and the influence of inflammation[J]. Trends Cardiovasc Med, 2022, S1050-1738(22)00029-9. doi:10.1016/j.tcm.2022.02.005.[online ahead of print]. |
[10] | LV D, LUO M, CHENG Z, et al. Tubeimoside I ameliorates myocardial ischemia-reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis[J]. Oxid Med Cell Longev, 2021, 2021:5577019. doi:10.1155/2021/5577019. |
[11] | OSTOVANEH M R, MAKKAR R R, AMBALE-VENKATESH B, et al. Effect of cardiosphere-derived cells on segmental myocardial function after myocardial infarction: ALLSTAR randomised clinical trial[J]. Open Heart, 2021, 8(2):e001614. doi:10.1136/openhrt-2021-001614. |
[12] | HIRAI K, OUSAKA D, FUKUSHIMA Y, et al. Cardiosphere-derived exosomal microRNAs for myocardial repair in pediatric dilated cardiomyopathy[J]. Sci Transl Med, 2020, 12(573):eabb3336. doi:10.1126/scitranslmed.abb3336. |
[13] | CHANCE T C, WU X, KEESEE J D, et al. Extracellular vesicles derived from cardiosphere-derived cells as a potential antishock therapeutic[J]. J Trauma Acute Care Surg, 2021, 91(2S Suppl 2):S81-S88. doi:10.1097/TA.0000000000003218. |
[14] | DE COUTO G, JAGHATSPANYAN E, DEBERGE M, et al. Mechanism of enhanced MerTK-dependent macrophage efferocytosis by extracellular vesicles[J]. Arterioscler Thromb Vasc Biol, 2019, 39(10):2082-2096. doi:10.1161/ATVBAHA.119.313115. |
[15] | IBRAHIM A G, CHENG K, MARBÁN E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy[J]. Stem Cell Reports, 2014, 2(5):606-619. doi:10.1016/j.stemcr.2014.04.006. |
[16] | CAMBIER L, GIANI J F, LIU W, et al. Angiotensin II-induced end-organ damage in mice is attenuated by human exosomes and by an exosomal Y RNA fragment[J]. Hypertension, 2018, 72(2):370-380. doi:10.1161/HYPERTENSIONAHA.118.11239. |
[17] | FAN Q, TAO R, ZHANG H, et al. Dectin-1 contributes to myocardial ischemia/reperfusion injury by regulating macrophage polarization and neutrophil infiltration[J]. Circulation, 2019, 139(5):663-678. doi:10.1161/CIRCULATIONAHA.118.036044. |
[18] | DE COUTO G, GALLET R, CAMBIER L, et al. Exosomal microRNA transfer into macrophages mediates cellular postconditioning[J]. Circulation, 2017, 136(2):200-214. doi:10.1161/CIRCULATIONAHA.116.024590. |
[19] | WANG Q, WU J, ZENG Y, et al. Pyroptosis:A pro-inflammatory type of cell death in cardiovascular disease[J]. Clin Chim Acta, 2020, 510:62-72. doi:10.1016/j.cca.2020.06.044. |
[20] | PAN Y, CAI W, HUANG J, et al. Pyroptosis in development,inflammation and disease[J]. Front Immunol, 2022, 13:991044. doi:10.3389/fimmu.2022.991044. |
[21] | KORSHUNOVA A Y, BLAGONRAVOV M L, NEBORAK E V, et al. BCL2-regulated apoptotic process in myocardial ischemia-reperfusion injury(Review)[J]. Int J Mol Med, 2021, 47(1):23-36. doi:10.3892/ijmm.2020.4781. |
[22] | NAMAZI H, NAMAZI I, GHIASI P, et al. Exosomes secreted by normoxic and hypoxic cardiosphere-derived cells have anti-apoptotic effect[J]. Iran J Pharm Res, 2018, 17(1):377-385. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||