Tianjin Medical Journal ›› 2025, Vol. 53 ›› Issue (8): 814-819.doi: 10.11958/20250965
• Experimental Research • Previous Articles Next Articles
YU Xiaomeng1(), SUO Rui2,3, DU Xintao2,3, SUO Ying2,3, ASIHAER Ayala2,3, HAO Tianxu2,3, ZHAO Xiaoyun2,3,4,△(
)
Received:
2025-03-11
Revised:
2025-06-16
Published:
2025-08-15
Online:
2025-08-12
Contact:
△E-mail:YU Xiaomeng, SUO Rui, DU Xintao, SUO Ying, ASIHAER Ayala, HAO Tianxu, ZHAO Xiaoyun. Effects of human umbilical cord-derived mesenchymal stem cells on chronic intermittent hypoxia in mice[J]. Tianjin Medical Journal, 2025, 53(8): 814-819.
CLC Number:
基因名称 | 引物序列(5′→3′) | 产物大小/bp | |
---|---|---|---|
cGAS | 上游: | GAGGCGCGGAAAGTCGTAA | 98 |
下游: | TTGTCCGGTTCCTTCCTGGA | ||
STING | 上游: | GGTCACCGCTCCAAATATGTAG | 135 |
下游: | CAGTAGTCCAAGTTCGTGCGA | ||
NF-κB | 上游: | AGGCTTCTGGGCCTTATGTG | 111 |
下游: | TGCTTCTCTCGCCAGGAATAC | ||
GAPDH | 上游: | AGGTCGGTGTGAACGGATTTG | 123 |
下游: | TGTAGACCATGTAGTTGAGGTCA |
Tab.1 Primer sequence
基因名称 | 引物序列(5′→3′) | 产物大小/bp | |
---|---|---|---|
cGAS | 上游: | GAGGCGCGGAAAGTCGTAA | 98 |
下游: | TTGTCCGGTTCCTTCCTGGA | ||
STING | 上游: | GGTCACCGCTCCAAATATGTAG | 135 |
下游: | CAGTAGTCCAAGTTCGTGCGA | ||
NF-κB | 上游: | AGGCTTCTGGGCCTTATGTG | 111 |
下游: | TGCTTCTCTCGCCAGGAATAC | ||
GAPDH | 上游: | AGGTCGGTGTGAACGGATTTG | 123 |
下游: | TGTAGACCATGTAGTTGAGGTCA |
组别 | IL-6 | IL-1β |
---|---|---|
对照组 | 28.702±6.745 | 6.974±2.048 |
模型组 | 119.202±31.029a | 39.970±5.659a |
hUCMSCs组 | 41.570±11.875b | 20.756±6.226b |
hUCMSCs+DMXAA组 | 167.679±25.910c | 33.981±4.150c |
F | 57.070* | 56.140* |
组别 | TNF-α | IL-17A |
对照组 | 6.542±1.511 | 7.042±0.793 |
模型组 | 23.165±4.200a | 23.900±8.091a |
hUCMSCs组 | 12.028±1.495b | 10.428±2.030b |
hUCMSCs+DMXAA组 | 24.743±3.744c | 27.427±2.267c |
F | 51.183* | 31.695* |
Tab.2 Comparison of pro-inflammatory cytokine levels between four groups of mice (n=6,ng/L,$\bar{x}±s$)
组别 | IL-6 | IL-1β |
---|---|---|
对照组 | 28.702±6.745 | 6.974±2.048 |
模型组 | 119.202±31.029a | 39.970±5.659a |
hUCMSCs组 | 41.570±11.875b | 20.756±6.226b |
hUCMSCs+DMXAA组 | 167.679±25.910c | 33.981±4.150c |
F | 57.070* | 56.140* |
组别 | TNF-α | IL-17A |
对照组 | 6.542±1.511 | 7.042±0.793 |
模型组 | 23.165±4.200a | 23.900±8.091a |
hUCMSCs组 | 12.028±1.495b | 10.428±2.030b |
hUCMSCs+DMXAA组 | 24.743±3.744c | 27.427±2.267c |
F | 51.183* | 31.695* |
组别 | 炎症评分 | 纤维化评分 |
---|---|---|
对照组 | 0.958±0.246 | 0.833±0.204 |
模型组 | 3.188±0.360a | 1.729±0.399a |
hUCMSCs组 | 1.117±0.229b | 1.167±0.303b |
hUCMSCs+DMXAA组 | 2.729±0.544c | 1.708±0.332c |
F | 44.153* | 11.373* |
Tab.3 Comparison of lung tissue inflammation scores and fibrosis scores between four groups of mice (n=6,分,$\bar{x}±s$)
组别 | 炎症评分 | 纤维化评分 |
---|---|---|
对照组 | 0.958±0.246 | 0.833±0.204 |
模型组 | 3.188±0.360a | 1.729±0.399a |
hUCMSCs组 | 1.117±0.229b | 1.167±0.303b |
hUCMSCs+DMXAA组 | 2.729±0.544c | 1.708±0.332c |
F | 44.153* | 11.373* |
组别 | E-Cadherin | α-SMA |
---|---|---|
对照组 | 1.708±0.376 | 0.938±0.234 |
模型组 | 0.813±0.234a | 1.813±0.342a |
hUCMSCs组 | 1.646±0.320b | 1.208±0.323b |
hUCMSCs+DMXAA组 | 1.083±0.313c | 1.708±0.313c |
F | 11.496* | 11.012* |
Tab.4 Comparison of E-Cadherin and α-SMA protein expression in lung tissue between four groups of mice (n=6,$\bar{x}±s$)
组别 | E-Cadherin | α-SMA |
---|---|---|
对照组 | 1.708±0.376 | 0.938±0.234 |
模型组 | 0.813±0.234a | 1.813±0.342a |
hUCMSCs组 | 1.646±0.320b | 1.208±0.323b |
hUCMSCs+DMXAA组 | 1.083±0.313c | 1.708±0.313c |
F | 11.496* | 11.012* |
组别 | cGAS | STING | NF-κB |
---|---|---|---|
对照组 | 1.066±0.221 | 1.074±0.603 | 1.061±0.161 |
模型组 | 2.416±0.605a | 3.373±0.948a | 4.489±1.584a |
hUCMSCs组 | 1.279±0.698b | 1.405±0.426b | 2.152±1.094b |
hUCMSCs+DMXAA组 | 2.458±0.802c | 3.219±1.265c | 4.147±1.402c |
F | 8.405* | 11.288* | 11.238* |
Tab.5 Comparison of cGAS, STING and NF-κB mRNA expression between four groups of mice (n=6,$\bar{x}±s$)
组别 | cGAS | STING | NF-κB |
---|---|---|---|
对照组 | 1.066±0.221 | 1.074±0.603 | 1.061±0.161 |
模型组 | 2.416±0.605a | 3.373±0.948a | 4.489±1.584a |
hUCMSCs组 | 1.279±0.698b | 1.405±0.426b | 2.152±1.094b |
hUCMSCs+DMXAA组 | 2.458±0.802c | 3.219±1.265c | 4.147±1.402c |
F | 8.405* | 11.288* | 11.238* |
组别 | E-Cadherin | N-Cadherin | |||
---|---|---|---|---|---|
对照组 | 1.082±0.064 | 0.506±0.161 | |||
模型组 | 0.684±0.115a | 1.021±0.331a | |||
hUCMSCs组 | 0.932±0.078b | 0.606±0.171b | |||
hUCMSCs+DMXAA组 | 0.714±0.131c | 0.972±0.169c | |||
F | 21.054* | 8.308* | |||
组别 | α-SMA | Vimentin | |||
对照组 | 0.813±0.085 | 0.562±0.051 | |||
模型组 | 1.164±0.196a | 1.449±0.147a | |||
hUCMSCs组 | 0.871±0.158b | 0.728±0.069b | |||
hUCMSCs+DMXAA组 | 1.172±0.210c | 1.256±0.303c | |||
F | 7.530* | 35.369* | |||
组别 | cGAS | STING | NF-κB | ||
对照组 | 0.879±0.025 | 0.835±0.103 | 0.801±0.104 | ||
模型组 | 1.780±0.143a | 1.126±0.230a | 1.361±0.184a | ||
hUCMSCs组 | 0.961±0.039b | 0.773±0.150b | 0.925±0.048b | ||
hUCMSCs+DMXAA组 | 1.370±0.105c | 1.056±0.113c | 1.207±0.093c | ||
F | 122.977* | 7.057* | 28.249* |
Tab.6 Comparison of protein expression levels between four groups of mice (n=6,$\bar{x}±s$)
组别 | E-Cadherin | N-Cadherin | |||
---|---|---|---|---|---|
对照组 | 1.082±0.064 | 0.506±0.161 | |||
模型组 | 0.684±0.115a | 1.021±0.331a | |||
hUCMSCs组 | 0.932±0.078b | 0.606±0.171b | |||
hUCMSCs+DMXAA组 | 0.714±0.131c | 0.972±0.169c | |||
F | 21.054* | 8.308* | |||
组别 | α-SMA | Vimentin | |||
对照组 | 0.813±0.085 | 0.562±0.051 | |||
模型组 | 1.164±0.196a | 1.449±0.147a | |||
hUCMSCs组 | 0.871±0.158b | 0.728±0.069b | |||
hUCMSCs+DMXAA组 | 1.172±0.210c | 1.256±0.303c | |||
F | 7.530* | 35.369* | |||
组别 | cGAS | STING | NF-κB | ||
对照组 | 0.879±0.025 | 0.835±0.103 | 0.801±0.104 | ||
模型组 | 1.780±0.143a | 1.126±0.230a | 1.361±0.184a | ||
hUCMSCs组 | 0.961±0.039b | 0.773±0.150b | 0.925±0.048b | ||
hUCMSCs+DMXAA组 | 1.370±0.105c | 1.056±0.113c | 1.207±0.093c | ||
F | 122.977* | 7.057* | 28.249* |
[1] | BENJAFIELD A V, AYAS N T, EASTWOOD P R, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea:a literature-based analysis[J]. Lancet Respir Med, 2019, 7(8):687-698. doi:10.1016/S2213-2600(19)30198-5. |
[2] | SUN H, DU Y, ZHANG L, et al. Increasing circulating ESM-1 and adhesion molecules are associated with earlystage atherosclerosis in OSA patients:A cross-sectional study[J]. Sleep Med, 2022, 98:114-120. doi:10.1016/j.sleep.2022.06.015. |
[3] | ZENG S, WANG Y, AI L, et al. Chronic intermittent hypoxia-induced oxidative stress activates TRB3 and phosphorylated JNK to mediate insulin resistance and cell apoptosis in the pancreas[J]. Clin Exp Pharmacol Physiol, 2024, 51(3):e13843. doi:10.1111/1440-1681.13843. |
[4] | LI X, ZHANG X, HOU X, et al. Obstructive sleep apnea-increased DEC1 regulates systemic inflammation and oxidative stress that promotes development of pulmonary arterial hypertension[J]. Apoptosis, 2023, 28(3/4):432-446. doi:10.1007/s10495-022-01797-y. |
[5] | HARRELL C R, DJONOV V, VOLAREVIC V. The cross-talk between Mesenchymal Stem Cells and Immune Cells in Tissue Repair and Regeneration[J]. Int J Mol Sci, 2021, 22(5):2472. doi:10.3390/ijms22052472. |
[6] | XU L, ZHANG L, XIANG Y, et al. Therapeutic role of adipose-derived mesenchymal stem cells-derived extracellular vesicles in rats with obstructive sleep apnea hypopnea syndrome[J]. Regen Ther, 2023, 22:210-223. doi:10.1016/j.reth.2023.01.003. |
[7] | RUBIES C, DANTAS A P, BATLLE M, et al. Aortic remodelling induced by obstructive apneas is normalized with mesenchymal stem cells infusion[J]. Sci Rep, 2019, 9(1):11443. doi:10.1038/s41598-019-47813-1. |
[8] | SUN C, SHI H, ZHAO X, et al. The Activation of cGAS-STING in Acute Kidney Injury[J]. J Inflamm Res, 2023, 16:4461-4470. doi:10.2147/JIR.S423232. |
[9] | ZHANG Z, ZHANG C. Regulation of cGAS-STING signalling and its diversity of cellular outcomes[J]. Nat Rev Immunol, 2025, 25(6):425-444. doi:10.1038/s41577-024-01112-7. |
[10] | GLEESON M, MCNICHOLAS W T. Bidirectional relationships of comorbidity with obstructive sleep apnoea[J]. Eur Respir Rev, 2022, 31(164):210256. doi:10.1183/16000617.0256-2021. |
[11] | HOU Y, XU N, LI S, et al. Mechanism of SMND-309 against lung injury induced by chronic intermittent hypoxia[J]. Int Immunopharmacol, 2022,105:108576. doi:10.1016/j.intimp.2022.108576. |
[12] | MANFIOLETTI G, FEDELE M. Epithelial-Mesenchymal Transition (EMT)[J]. Int J Mol Sci, 2023, 24(14):11386. doi:10.3390/ijms241411386. |
[13] | GAO P, KAJIYA M, MOTOIKE S, et al. Application of mesenchymal stem/stromal cells in periodontal regeneration: Opportunities and challenges[J]. Jpn Dent Sci Rev, 2024, 60:95-108. doi:10.1016/j.jdsr.2024.01.001. |
[14] | SEOW K S, LING A. Mesenchymal stem cells as future treatment for cardiovascular regeneration and its challenges[J]. Ann Transl Med, 2024, 12(4):73. doi:10.21037/atm-23-1936. |
[15] | WANG M, HAO Y, HE W, et al. Nebulized mesenchymal stem cell-derived exosomes attenuate airway inflammation in a rat model of chronic obstructive pulmonary disease[J]. Cell Immunol, 2025,409-410:104933. doi:10.1016/j.cellimm.2025.104933. |
[16] | HE X Y, HAN M M, ZHAO Y C, et al. Surface-engineered mesenchymal stem cell for refractory asthma therapy: Reversing airway remodeling[J]. J Control Release, 2024, 376:972-984. doi:10.1016/j.jconrel.2024.10.056. |
[17] | LIANG X, LI Y, WU Y, et al. Human umbilical cord mesenchymal stem cell-derived microvesicles alleviate pulmonary fibrosis by inhibiting monocyte-macrophage migration through ERK1/2 signaling-mediated suppression of CCL2 expression[J]. Stem Cell Res Ther, 2025, 16(1):145. doi:10.1186/s13287-025-04266-w. |
[18] | HARRELL C R, JANKOVIC M G, FELLABAUM C, et al. Molecular mechanisms responsible for anti-inflammatory and immunosuppressive effects of mesenchymal stem cell-derived factors[J]. Adv Exp Med Biol, 2019,1084:187-206. doi:10.1007/5584_2018_306. |
[19] | BECK M A, FISCHER H, GRABNER L M, et al. DNA hypomethylation leads to cGAS-induced autoinflammation in the epidermis[J]. EMBO J, 2021, 40(22):e108234. doi:10.15252/embj.2021108234. |
[20] | CHEN C, XU P. Cellular functions of cGAS-STING signaling[J]. Trends Cell Biol, 2023, 33(8):630-648. doi:10.1016/j.tcb.2022.11.001. |
[21] | SHINDE O, BOYER J A, CAMBIER S, et al. Structures of ATP-binding cassette transporter ABCC1 reveal the molecular basis of cyclic dinucleotide cGAMP export[J]. Immunity, 2025, 58(1):59-73.e5. doi:10.1016/j.immuni.2024.12.002. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||